Методика составления уравнений состояния
Эта методика включает в себя следующие основные этапы:
1. Составляется ориентированный граф схемы (см. рис. 4,б), на котором выделяется дерево, охватывающее все конденсаторы и источники напряжения (ЭДС). Резисторы включаются в дерево по необходимости: для охвата деревом всех узлов. В ветви связи включаются катушки индуктивности, источники тока и оставшиеся резисторы.
2. Осуществляется нумерация ветвей графа (и элементов в схеме), проводимая в следующей последовательности: первыми нумеруются участки графа (схемы) с конденсаторами, затем резисторами, включенными в дерево, следующими нумеруются ветви связи с резисторами и, наконец, ветви с индуктивными элементами (см. рис. 4,б).
3. Составляется таблица, описывающая соединение элементов в цепи. В первой строке таблицы (см. табл. 1) перечисляются емкостные и резистивные элементы дерева, а также источники напряжения (ЭДС). В первом столбце перечисляются резистивные и индуктивные элементы ветвей связи, а также источники тока.
Таблица 1. Таблица соединений
u | |||
-1 | |||
J |
Процедура заполнения таблицы заключается в поочередном мысленном замыкании ветвей дерева с помощью ветвей связи до получения контура с последующим обходом последнего согласно ориентации соответствующей ветви связи. Со знаком «+» записываются ветви графа, ориентация которых совпадает с направлением обхода контура, и со знаком «-» ветви, имеющие противоположную ориентацию.
Осуществляется расписывание таблицы по столбцам и по строкам. В первом случае получаются уравнения по первому закону Кирхгофа, во втором – по второму.
В рассматриваемом случае (равенство тривиально)
,
откуда в соответствии с нумерацией токов в исходной цепи
.
При расписывании таблицы соединений по строкам напряжения на пассивных элементах необходимо брать со знаками, противоположными табличным:
![]() | (7) |
Эти уравнения совпадают соответственно с соотношениями (6) и (5).
Из (7) непосредственно вытекает
.
Таким образом, формализованным способом получены уравнения, аналогичные составленным выше с использованием законов Кирхгофа.
Литература
- Бессонов Л.А.Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Матханов П.Н.Основы анализа электрических цепей. Линейные цепи.: Учеб. для электротехн. радиотехн. спец. вузов. 3-е изд., перераб. и доп. –М.: Высш. шк., 1990. –400с.
Контрольные вопросы и задачи
- Какой принцип лежит в основе метода расчета переходных процессов с использованием интеграла Дюамеля, и для каких цепей может быть использован данный метод?
- В каких случаях целесообразно использовать метод расчета с использованием интеграла Дюамеля?
- В цепи на рис. 3 при
напряжение на входе цепи мгновенно спадает до нуля. Определить ток в цепи.
Ответ: при
;
при
.
- Какие требования и почему выдвигаются к уравнениям состояния?
- Что включает в себя система уравнений при расчете переходного процесса в цепи методом переменных состояния?
- Перечислите основные этапы методики составления уравнений состояния.
- Записать матрицы А и Вдля цепи на рис. 5, если
,
,
,
,
,
.
Ответ: | А | ![]() | ; |
В | ![]() |
Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент. Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками. Нелинейные элементы можно разделить надвух– и многополюсные.Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные – для ряда фиксированных значений одного из входных. По другому признаку классификации нелинейные элементы можно разделить на инерционныеи безынерционные.Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают. Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных. В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
Далее задаемся током, протекающим через один из резисторов, например во второй ветви
Таблица 1. Таблица результатов расчета методом двух узлов
Алгебраическая сумма токов в соответствии с первым законом Кирхгофа должна равнять нулю, поэтому получающаяся в последней колонке табл. 1 величина В осях Литература
Контрольные вопросы и задачи
Ответ:
Ответ:
Ответ: | ||||||||||||||||||||
Лекция N 29. Расчет нелинейных цепей методом эквивалентного генератора. |
Если в сложной электрической цепи имеется одна ветвь с нелинейным резистором, то определение тока в ней можно проводить на основе теоремы об активном двухполюснике (методом эквивалентного генератора). Идея решения заключается в следующем. Ветвь, содержащая нелинейный резистор, выделяется из исходной цепи, а вся остальная, уже линейная, схема представляется в виде активного двухполюсника (АД). Согласно теореме об АД схему линейного АД по отношению к зажимам 1-2 выделенной ветви (см. рис. 1,а) можно представить эквивалентным генератором (см. рис. 1,б) с ЭДС, равной напряжению ![]() ![]()
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
Литература
Контрольные вопросы и задачи
Ответ: Р=2 Вт.
Ответ:
|