Влияние высоты на летные данные самолета
Рассмотрим горизонтальный полет на различных высотах при одном и том же полетном весе и угле атаки.
При выполнении горизонтального полета на любой высоте необходимо обеспечить равенство подъемной силы и веса самолета. Для выполнения этого условия при постоянном весе и угле атаки на большей высоте, где плотность воздуха меньше, истинная скорость горизонтального полета должна быть больше, но приборная скорость одна и та же.
Сохранение приборной скорости при любом постоянном угле атаки на различных высотах объясняется тем, что приборная скорость замеряет динамическое давление q=rV2/2. С поднятием на высоту для сохранения Y=G при постоянном угле атаки (Су=const) квадрат истинной скорости полета увеличивается во столько раз, во сколько раз уменьшается плотность воздуха, а значит, динамическое давление и приборная скорость остаются постоянными. Это хорошо видно из выражения rV2/2, получаемого из уравнения Y=G; правая часть не зависит от высоты, т. е. динамическое давление и приборная скорость с высотой не меняются.
Учитывая это, можно установить связь между истинной и приборной скоростями. Для определения истинной скорости необходимо значение приборной скорости умножить на высотный коэффициент Ör0/rH, т. е. V=VпрÖr0/rH, и наоборот, Vпр=V/Ör0/rH, где значения r0 и rН берутся из таблицы стандартной атмосферы.
Сохранение приборной скорости при любом постоянном угле атаки на всех высотах при одном и том же весе самолета имеет большое значение и в обеспечении безопасности полета, так как позволяет пилоту определять режим полета (угол атаки). Так, например, минимально допустимые скорости полета для всех высот устанавливаются по величине приборной скорости (широкая стрелка на указателе скорости).
Тяга, потребная для горизонтального полета на малых числах М, от высоты (плотности воздуха) не зависит. Это объясняется следующим. Полет при постоянном угле атаки (Сх=const) с данных полетным весом (G=const) на всех высотах выполняется на одной и той же приборной скорости, а значит, при одном и том же динамическом давлении. Следовательно, сопротивление самолета при таких условиях не изменяется, и тяга, потребная для горизонтального полета, остается величиной постоянной
Х=СхSrV2/2=Pгп=const
Таким образом, под действием одной и той же тяги горизонтальный полет на заданном угле атаки при постоянном полетном весе на больших высотах выполняется на одной и той же приборной скорости, что и у земли, но с большей истинной скоростью.
Так как с поднятием на высоту скорость звука уменьшается, а истинная скорость полета при постоянной приборной увеличивается, то увеличивается и число М. Учитывая это, можно утверждать, что постоянство потребной тяги и приборной скорости (угла атаки) будет сохраняться до той высоты, до которой число М будет оставаться меньшим 0,4, т. е. пока можно еще пренебрегать влиянием сжимаемости воздуха. Если при заданной приборной скорости (угле атаки) число М горизонтального полета станет больше 0,4, то потребная тяга увеличится, так как вследствие сжимаемости воздуха коэффициент Сх на этом угле атаки и сопротивление самолета увеличатся.
Для определения летных характеристик самолета с заданным полётным весом на различных высотах полета пользуются кривыми потребных и располагаемых тяг для этих высот (рис. 18).
Для определения величины тяги, потребной для выполнения горизонтального полета при любой постоянной скорости (угле атаки) и заданной высоте, используют поляру горизонтального полета для этой высоты (см. рис. 5 а). Из поляры берутся значения Су и Сх и по соответствующим формулам вычисляются аэродинамическое качество и тяга, потребные для горизонтального полета на заданных скоростях. В результате этих вычислений составляется таблица значений потребной скорости и тяги с учетом сжимаемости воздуха для заданной высоты полета. Такие таблицы составляются для ряда высот. На основании таблиц производится построение. кривых потребных тяг для этих высот.
Кривые располагаемых тяг для этих же высот строятся на основании результатов испытаний двигателя.
Так как с поднятием на высоту скорость, потребная для горизонтального полета, при любом постоянном угле атаки увеличивается, а потребная тяга не изменяется (за исключением больших чисел М), то кривые потребных тяг на графике смещаются вправо с поправкой на сжимаемость воздуха при больших числах М.
Располагаемая тяга силовой установки самолета с поднятием на высоту уменьшается (см. гл. 2), кривые располагаемых тяг для различных высот показать на рис. 13.
Вследствие изменения потребной скорости, располагаемой тяги и потребной тяги для больших чисел М изменяются летные характеристики самолета с поднятием на высоту.
На рис. 18 и 19 показано изменение характерных скоростей горизонтального полета самолета Ил-76Т при полетном весе 160000 кгс с поднятием на высоту.
1. На кривой 1 (см. рис. 19) показано изменение истинной максимальной скорости горизонтального полета при приборной скорости 600 км/ч и числе М=0,77, причем на Н=7500 м на V=600 км/ч ПР число М= 0,77.
2. Минимальная (теоретическая) скорость горизонтального полета соответствует критическому углу атаки. Эта скорость практически равна скорости срыва Vс, определяемой летными испытаниями. На кривой 5 показано изменение минимальной истинной скорости горизонтального полета при изменении высоты. Полет на минимальной скорости, соответствующий критическому углу атаки будет до H=4500 м, а на больших высотах угол атаки станет меньше критического, так как располагаемая тяга силовой установки станет меньше потребной для горизонтального полета. Угол атаки, соответствующий этой скорости, будет уменьшаться.
Для обеспечения безопасности полеnа на всех высотах устанавливается минимально допустимая приборная скорость, равная 1,25 Vс (кривая 4).
Как видно из графиков минимальная и минимально допустимая истинные скорости с увеличением высоты увеличиваются. Величины скоростей срыва у земли при различном весе самолета показаны на рис. 16.
3. Изменение теоретического и практического диапазона скоростей с поднятием на высоту показано соответственно кривыми 1—5 и кривыми 1—4.
4. На кривой 3 показано изменение наивыгоднейшей истинной скорости горизонтального полета. При Н=0 Vнв=448. ..450 км/ч ПР и равна истинной. С увеличением высоты наивыгоднейшая истинная скорость увеличивается.
5. Кривая 2 показывает увеличение истинной скорости при наборе высоты со скоростью Vнаб=530 км/ч ПР и ее уменьшение при числе М=0,73.
Глава 4. ВЗЛЕТ
Общие сведения о взлете
При подготовке к взлету:
анализируются метеорологические условия полета на заданном маршруте и на аэродромах взлета и посадки;
по номограммам определяется максимально допустимый взлетный и посадочный вес самолета;
разрабатывается план полета по заданному маршруту в соответствии с требованиями РЛЭ;
для выбранного взлетного веса определяются скорость принятия решения V1, скорость начала подъема колес передней опоры VR, безопасная скорость взлета со взлетной конфигурацией самолета V2, безопасная скорость начала уборки механизации V3, безопасная скорость с полетной конфигурацией самолета V4;
рассчитывается коммерческая нагрузка и потребное количество топлива на полет;
выбирается схема размещения загрузки и рассчитывается центровка самолета, обеспечивающая допустимый диапазон центровок в течение всего полета;
определяется угол установки стабилизатора;
производится предполетный осмотр самолета и его оборудования каждым членом экипажа в соответствии с РЛЭ.
В процессе подготовки к полету и взлету необходимо учитывать все летные ограничения самолета Ил-76Т.