Тяга двигателя и удельный расход топлива
Силовая установка самолета состоит из четырех двигателей Д-30КП. Двигатель Д-30КП (рис. 9) турбореактивный, двухконтурный, с двухкаскадным компрессором и смещением газовых потоков наружного и внутреннего контуров.
Компрессор двигателя двухкаскадный, осевого типа. Первый каскад низкого давления /—трехступенчатый, с первой сверхзвуковой ступенью, приводится во вращение четырехступенчатой турбиной низкого давления 5. Второй каскад высокого давления 2— одиннадцатиступенчатый с поворотными лопатками входного направляющего аппарата приводится во вращение двухступенчатой турбиной высокого давления 4. Роторы первого и второго каскада вращаются против часовой стрелки с разной частотой вращения. Степень повышения давления воздуха в компрессоре—19,45 (первый каскад — 2,08, второй — 9,35).
Камера сгорания 3 трубчатокольцевого типа с двенадцатью жаровыми трубами.
Турбина двигателя осевого типа, реактивная, шестиступенчатая, состоит из двух турбин. Первая турбина 4 — высокого давления (в. д.), двухступенчатая, диски, сопловые и рабочие лопатки охлаждаются воздухом. Вторая турбина 5—низкого давления (н. д.), четырехступенчатая, с охлаждаемыми дисками.
Реверсивное устройство створчатого типа, с двумя наружными боковым створками, предназначено для получения обратной тяги, для управления положением створок имеет автономную гидравлическую систему.
Реактивное сопло 7 дозвуковое, нерегулируемое, выполненное как одно целое с камерой смещения 6 потоков внутреннего и внешнего контуров.
Управление каждым двигателем осуществляется рычагом управления (РУД), сблокированным с рычагом управления реверсом тяги (РУР) и рычагом останова (РОД).
Двухвальная схема двигателя улучшает его эксплуатационные данные, расширяет диапазон устойчивой работы, улучшает приемистость и облегчает запуск. Двухконтурная схема двигателя обеспечивает экономичность на всех режимах и условиях полета в результате снижения удельного расхода топлива. Степень двухконтурности двигателя - отношение расхода воздуха, через наружный
Рис. 9. Схема двигателя Д-ЗОКП и графики изменения абсолютной температуры ТК, давления р* и скорости течения газов с по его
газовому тракту:
/—компрессор низкого давления: 2— компрессор высокого давления; 3—камера сгорания; 4—турбина высокого давления; 5—турбина низкого давления: ^—камера смешения: 7—реактивное
сопло
контур к расходу воздуха через внутренний контур — на взлетном режиме равна 2,33. Для улучшения посадочных характеристик и характеристик прерванного взлета все двигатели оборудованы системой реверсирования тяги. Каждый двигатель
Д-ЗОКП создает на взлетном режиме тягу 12000 кгс (4 двигателя — 48000 кгс) на скорости, равной нулю в стандартных условиях. Наличие четырех двигателей с большой тягой обеспечивает хорошие взлетные характеристики самолета. При отказе одного двигателя обеспечивается безопасность продолжения взлета на трех, а также продолжение горизонтального полета на высоте не менее 8000 м при полетном весе 160 т. При отказе двух двигателей обеспечивается возможность продолжения полета на высоте не менее 3000 м при полетном весе 160 т и безопасная посадка на ближайшем аэродроме.
Величина тяги зависит от расхода воздуха и топлива через двигатель в единицу времени. Расход топлива за единицу времени составляет в среднем 1 ... 1,5% от расхода воздуха. Следовательно, можно считать, что масса газов, выходящих из двигателя, практически равна массе воздуха, входящего в него.
Допустим, что давление воздуха перед входом в двигатель равно давлению на выходе из него. Тогда масса газовой струи, проходящая через двигатель, может получить ускорение только вследствие силового воздействия на эту массу. На основании третьего закона механики масса газов, приобретая ускорение, с такой же силой действует на двигатель. Сила действия этой массы на двигатель и является его реактивной тягой РR.
Если обозначить скорость воздуха на входе в двигатель (скорость полета) через V, а скорость выхода газов из него через C5, то изменение количества движения массы воздуха т=G/g, прошедшей через двигатель за время t, будет равно импульсу силы PR, действовавшей на эту массу т(С5—V)=РRt, где РRt —импульс силы PR, а т(С5— V)=тC5—тV — изменение количества движения массы воздуха т. Из этого выражения тяга турбореактивного двигателя будет
где т/t=тсек—секундная масса воздуха, проходящего через двигатель.
Из этой формулы видно, что чем больше секундный расход воздуха (mсек) и больший прирост его скорости (С5—V) в двигателе, тем реактивная тяга больше.
Для оценки экономичности двигателя вводится понятие удельной тяги руд и удельного расхода воздуха Суд. Учитывая, что секундная масса воздуха, проходящего через двигатель mсек=Gсек/g (где Ссек—секундный вес воздуха, проходящего через двигатель), то тягу двигателя можно выразить РR=Gсек(C5—V)/g.
Выражение (C5— V)/g и является удельной тягой руд. Как видно из формулы, удельная тяга руд=(C5— V)/g численно равна тяге, получаемой при прохождении через двигатель 1 кг воздуха.
Удельный расход топлива Суд==Счас/РR—часовой расход топлива в килограммах, необходимый для получения одного килограмма тяги двигателя. Если удельный расход топлива Суд меньший, а удельная тяга руд больше, то двигатель более экономичен.