Постановка задачи автоматического формирования математических моделей систем на макроуровне
Требования к методам в САПР, обусловленные особенностями математических моделей
Использование ММ объекта в виде системы дифференциальных уравнений в частных производных возможно только для очень простых технических систем, и даже в этом случае порядок аппроксимирующей алгебраической системы уравнений при моделировании в трехмерном пространстве может достигать 10 000 000 и более. Поэтому при моделировании на макроуровне в технической системе выделяются достаточно крупные элементы, которые в дальнейшем рассматриваются в виде неделимой единицы. Непрерывной независимой переменной остается (в сравнении с моделированием на микроуровне) только время. Математической моделью технической системы на макроуровне будет система ОДУ.
В САПР целесообразно использовать математические и программные средства, обеспечивающие моделирование всей номенклатуры проектируемых объектов и способные адаптироваться к изменяющимся условиям эксплуатации. Эти свойства достигаются, если применяемые средства имеют высокую степень универсальности. Получению универсальных средств способствует использование аналогий между подсистемами различной физической природы и между моделирующими их компонентными и топологическими уравнениями.
При выборе или разработке метода (алгоритма) анализа в САПР прежде всего устанавливается область его применения. Чем шире круг задач, которые объявлены как допустимые для решения данным методом, тем универсальнее метод.
В большинстве случаев четкая и однозначная формулировка ограничений на применение метода затруднительна. Возможны ситуации, когда оговоренные заранее условия применения метода выполняются, однако удовлетворительное решение задачи не получается. Следовательно, вероятность Р успешного применения метода в оговоренном заранее классе задач меньше единицы. Эта вероятность является количественной оценкой важного свойства методов и алгоритмов, называемого надежностью.
Отказы в решении задач могут проявляться в необходимости итерационного процесса, в превышении погрешностями предельно допустимых значений и т.п. Причинами отказов могут быть такие факторы, как плохая обусловленность ММ, ограниченная область сходимости, ограниченная устойчивость. Так, итерации по методу Ньютона при решении систем нелинейных алгебраических уравнений сходятся только в случае выбора начального приближения в достаточно малой окрестности корня.
В САПР должны применяться надежные методы и алгоритмы. Для повышения надежности часто прибегают к комбинированию различных методов, автоматической параметрической настройке методов и т.п. В конечном счете добиваются значений Р, равных или близких к единице.
Применение методов с Р = 1 хотя и нежелательно, но допускается в отдельных частных случаях при обязательном условии, что некорректное решение задачи распознается и отсутствует опасность принять такое решение за правильное.
К методам и алгоритмам анализа, как и к ММ, предъявляют требования точности и экономичности. Точность характеризуется степенью совпадения точного решения уравнений заданной модели и приближенного решения, полученного с помощью оцениваемого метода, а экономичность - затратами вычислительных ресурсов на реализацию метода (алгоритма).
Оценки точности и экономичности могут быть теоретические и экспериментальные.
Теоретические оценки погрешностей, трудоемкости требуемых вычислений и объемов, участвующих в переработке массивов, обычно выполняются при принятии ряда упрощающих предположений о характере используемых ММ. Примерами могут служить предположения о гладкости или линейности функциональных зависимостей, некоррелированности параметров и т.п. Несмотря на приближенность теоретических оценок, они представляют значительную ценность, так как обычно характеризуют эффективность применения исследуемого метода не к одной конкретной модели, а к некоторому классу моделей. Например, именно теоретические исследования позволяют установить, как зависят затраты машинного времени от размерности и обусловленности ММ при применении методов численного интегрирования систем ОДУ.
Однако теоретические оценки удобны для определения характера таких зависимостей, но числовые значения показателей эффективности для конкретных случаев могут быть весьма приближенными.
Поэтому находят применение также экспериментальные оценки, основанные на определении показателей эффективности на наборе специально составляемых ММ, называемых тестовыми. Тестовые ММ должны отражать характерные особенности моделей того класса объектов, которые являются для рассматриваемой предметной области. Результаты тестирования используются для сравнительной оценки методов и алгоритмов при их выборе для реализации в программном обеспечении САПР.