Классификация стандартных серверов
Как правило, каждый сервер обслуживает один (или несколько схожих) протоколов и серверы можно классифицировать по типу услуг, которые они предоставляют.
Универсальные серверы - особый вид серверной программы, не предоставляющий никаких услуг самостоятельно. Вместо этого универсальные серверы предоставляют серверам услуг упрощенный интерфейс к ресурсам межпроцессного взаимодействия и/или унифицированный доступ клиентов к различным услугам. Существуют несколько видов таких серверов:
inetd от англ. internet super-server daemon демон сервисов IP - стандартное средство UNIX-систем - программа, позволяющая писать серверы TCP/IP (и сетевых протоколов других семейств), работающие с клиентом через перенаправленные inetd потоки стандартного ввода и вывода (stdin и stdout).
RPC от англ. Remote Procedure Call удаленный вызов процедур - система интеграции серверов в виде процедур доступных для вызова удаленным пользователем через унифицированный интерфейс. Интерфейс изобретенный Sun Microsystems для своей операционной системы (SunOS, Solaris; Unix-система), в настоящее время используетстся как в большинстве Unix-систем, так и в Windows.
Прикладные клиент-серверные технологии Windows:
(D-)COM (англ. (Distributed) Component Object Model - модель составных объектов) и др. - Позволяет одним программам выполнять операции над объектами данных используя процедуры других программ. Изначально данная технология предназначена для их «внедрения и связывания объектов» (OLE англ. Object Linking and Embedding), но, в общем, позволяет писать широкий спектр различных прикладных серверов. COM работает только в пределах одного компьютера, DCOM доступна удаленно через RPC.
Active-X - Расширение COM и DCOM для создания мультимедиа-приложений.
Универсальные серверы часто используются для написания всевозможных информационных серверов, серверов, которым не нужна какая-то специфическая работа с сетью, серверов, не имеющих никаких задач, кроме обслуживания клиентов. Например, в роли серверов для inetd могут выступать обычные консольные программы и скрипты.
Большинство внутренних и сетевых специфических серверов Windows работают через универсальные серверы (RPC, (D-)COM).
Сетевые службы обеспечивают функционирование сети, например серверы DHCP и BOOTP обеспечивают стартовую инициализацию серверов и рабочих станций, DNS - трансляцию имен в адреса и наоборот.
Серверы туннелирования (например, различные VPN-серверы) и прокси-серверы обеспечивают связь с сетью, недоступной роутингом.
Серверы AAA и Radius обеспечивают в сети единую аутентификацию, авторизацию и ведение логов доступа.
Информационные службы. К информационным службам можно отнести как простейшие серверы сообщающие информацию о хосте (time, daytime, motd), пользователях (finger, ident), так и серверы для мониторинга, например SNMP. Большинство информационных служб работают через универсальные серверы.
Особым видом информационных служб являются серверы синхронизации времени - NTP кроме информировании клиента о точном времени NTP-сервер периодически опрашивает несколько других серверов на предмет коррекции собственного времени. Кроме коррекции времени анализируется и корректируется скорость хода системных часов. Коррекция времени осуществляется ускорением или замедлением хода системных часов (в зависимости от направления коррекции), чтобы избежать проблем возможных при простой перестановке времени.
Файл-серверы представляют собой серверы для обеспечения доступа к файлам на диске сервера.
Прежде всего, это серверы передачи файлов по заказу, по протоколам FTP, TFTP, SFTP и HTTP. Протокол HTTP ориентирован на передачу текстовых файлов, но серверы могут отдавать в качестве запрошенных файлов и произвольные данные, например, динамически созданные веб-страницы, картинки, музыку и т. п.
Другие серверы позволяют монтировать дисковые разделы сервера в дисковое пространство клиента и полноценно работать с файлами на них. Это позволяют серверы протоколов NFS и SMB. Серверы NFS и SMB работают через интерфейс RPC.
Недостатки файл-серверной системы:
Очень большая нагрузка на сеть, повышенные требования к пропускной способности. На практике это делает практически невозможной одновременную работу большого числа пользователей с большими объемами данных.
Обработка данных осуществляется на компьютере пользователей. Это влечет повышенные требования к аппаратному обеспечению каждого пользователя. Чем больше пользователей, тем больше денег придется потратить на оснащение их компьютеров.
Блокировка данных при редактировании одним пользователем делает невозможной работу с этими данными других пользователей.
Безопасность. Для обеспечения возможности работы с такой системой Вам будет необходимо дать каждому пользователю полный доступ к целому файлу, в котором его может интересовать только одно поле
Серверы доступа к данным обслуживают базу данных и отдают данные по запросам. Один из самых простых серверов подобного типа - LDAP (англ. Lightweight Directory Access Protocol - облегчённый протокол доступа к спискам).
Для доступа к серверам баз данных единого протокола не существует, однако все серверы баз данных объединяет использование единых правил формирования запросов - язык SQL (англ. Structured Query Language - язык структурированных запросов).
Службы обмена сообщениями позволяют пользователю передавать и получать сообщения (обычно - текстовые).
В первую очередь это серверы электронной почты, работающие по протоколу SMTP. SMTP-сервер принимает сообщение и доставляет его в локальный почтовый ящик пользователя или на другой SMTP-сервер (сервер назначения или промежуточный). На многопользовательских компьютерах, пользователи работают с почтой прямо на терминале (или веб-интерфейсе). Для работы с почтой на персональном компьютере, почта забирается из почтового ящика через серверы, работающие по протоколам POP3 или IMAP.
Для организации конференций существует серверы новостей, работающие по протоколу NNTP.
Для обмена сообщениями в реальном времени существуют серверы чатов, стандартный чат-сервер работает по протоколу IRC - распределенный чат для интернета.
Существует большое количество других чат-протоколов, например ICQ или Jabber.
Серверы удаленного доступа
Серверы удаленного доступа, через соответствующую клиентскую программу, обеспечивают пользователя консольным доступом к удаленной системе.
Для обеспечения доступа к командной строке служат серверы telnet, RSH, SSH.
Графический интерфейс для Unix-систем - X Window System, имеет встроенный сервер удаленного доступа, так как с такой возможностью разрабатывался изначально. Иногда возможность удаленного доступа к интерфейсу Х-Window неправильно называют «X-Server» (этим термином в X-Window называется видеодрайвер).
Стандартный сервер удаленного доступа к графическому интерфейсу Microsoft Windows называется терминальный сервер.
Некоторую разновидность управления (точнее мониторинга и конфигурирования), также, предоставляет протокол SNMP. Компьютер или аппаратное устройство для этого должно иметь SNMP-сервер.
Игровые серверы, служат для одновременной игры нескольких пользователей в единой игровой ситуации. Некоторые игры имеют сервер в основной поставке и позволяют запускать его в невыделенном режиме (то есть позволяют играть на машине, на которой запущен сервер).
Серверные решения - операционные системы и/или пакеты программ, оптимизированные под выполнение компьютером функций сервера и/или содержащие в своем составе комплект программ для реализации типичного сервисов.
Примером серверных решений можно привести Unix-системы, изначально предназначенные для реализации серверной инфраструктуры, или серверные модификации платформы Microsoft Windows.
Также необходимо выделить пакеты серверов и сопутствующих программ (например, комплект веб-сервер/PHP/MySQL для быстрой развертки хостинга) для установки под Windows (для Unix свойственна модульная или «пакетная» установка каждого компонента, поэтому такие решения редки).
В интегрированных серверных решениях установка всех компонентов выполняется единовременно, все компоненты в той или иной мере тесно интегрированы и предварительно настроены друг на друга. Однако в этом случае, замена одного из серверов или вторичных приложений (если их возможности не удовлетворяют потребностям) может представлять проблему.
Серверные решения служат для упрощения организации базовой ИТ-инфраструктуры компаний, то есть для оперативного построения полноценной сети в компании, в том числе и «с нуля». Компоновка отдельных серверных приложений в решение подразумевает, что решение предназначено для выполнения большинства типовых задач; при этом значительно снижается сложность развертывания и общая стоимость владения ИТ-инфраструктурой, построенной на таких решениях.
Прокси-сервер (от англ. proxy - «представитель, уполномоченный») служба в компьютерных сетях, позволяющая клиентам выполнять косвенные запросы к другим сетевым службам. Сначала клиент подключается к прокси-серверу и запрашивает какой-либо ресурс (например, e-mail), расположенный на другом сервере. Затем прокси-сервер либо подключается к указанному серверу и получает ресурс у него, либо возвращает ресурс из собственного кеша (в случаях, если прокси имеет свой кеш). В некоторых случаях запрос клиента или ответ сервера может быть изменён прокси-сервером в определённых целях. Также прокси-сервер позволяет защищать клиентский компьютер от некоторых сетевых атак.
Клиент-сервер - это модель взаимодействия компьютеров в сети. Как правило, компьютеры не являются равноправными. Каждый из них имеет свое, отличное от других, назначение, играет свою роль. Некоторые компьютеры в сети владеют и распоряжается информационно-вычислительными ресурсами, такими как процессоры, файловая система, почтовая служба, служба печати, база данных. Другие же компьютеры имеют возможность обращаться к этим службам, пользуясь услугами первых. Компьютер, управляющий тем или иным ресурсом, принято называть сервером этого ресурса, а компьютер, желающий им воспользоваться - клиентом. Конкретный сервер определяется видом ресурса, которым он владеет. Так, если ресурсом являются базы данных, то речь идет о сервере баз данных, назначение которого - обслуживать запросы клиентов, связанные с обработкой данных; если ресурс - это файловая система, то говорят о файловом сервере, или файл-сервере, и т. д.
В сети один и тот же компьютер может выполнять роль как клиента, так и сервера. Например, в информационной системе, включающей персональные компьютеры, большую ЭВМ и мини-компьютер под управлением UNIX, последний может выступать как в качестве сервера базы данных, обслуживая запросы от клиентов - персональных компьютеров, так и в качестве клиента, направляя запросы большой ЭВМ.
Этот же принцип распространяется и на взаимодействие программ. Если одна из них выполняет некоторые функции, предоставляя другим соответствующий набор услуг, то такая программа выступает в качестве сервера. Программы, которые пользуются этими услугами, принято называть клиентами. Так, ядро реляционной SQL-ориентированной СУБД часто называют сервером базы данных, или SQL-сервером, а программу, обращающуюся к нему за услугами по обработке данных - SQL-клиентом.
Рисунок 1.Системы с централизованной архитектурой.
Первоначально СУБД имели централизованную архитектуру (рис.1). В ней сама СУБД и прикладные программы, которые работали с базами данных, функционировали на центральном компьютере (большая ЭВМ или мини-компьютер). Там же располагались базы данных. К центральному компьютеру были подключены терминалы, выступавшие в качестве рабочих мест пользователей. Все процессы, связанные с обработкой данных, как то: поддержка ввода, осуществляемого пользователем, формирование, оптимизация и выполнение запросов, обмен с устройствами внешней памяти и т.д., выполнялись на центральном компьютере, что предъявляло жесткие требования к его производительности. Особенности СУБД первого поколения напрямую связаны с архитектурой систем больших ЭВМ и мини-компьютеров и и адекватно отражают все их преимущества и недостатки. Однако нас больше интересует современное состояние многопользовательских СУБД, для которых архитектура клиент-сервер стала фактическим стандартом.
Для более четкого представления об ее особенностях необходимо рассмотреть несколько моделей технологии клиент-сервер, что и будет сделано.
Если предполагается, что проектируемая информационная система (ИС) будет иметь технологию клиент-сервер, то это означает, что прикладные программы, реализованные в ее рамках, будут иметь распределенный характер. Иными словами, часть функций прикладной программы (или, проще, приложения) будет реализована в программе-клиенте, другая - в программе-сервере, причем для их взаимодействия будет определен некоторый протокол.
Основной принцип технологии клиент-сервер заключается в разделении функций стандартного интерактивного приложения на четыре группы, имеющие различную природу. Первая группа - это функции ввода и отображения данных. Вторая группа объединяет чисто прикладные функции, характерные для данной предметной области (например, для банковской системы - открытие счета, перевод денег с одного счета на другой и т.д.). К третьей группе относятся фундаментальные функции хранения и управления информационными ресурсами (базами данных, файловыми системами и т.д.). Наконец, функции четвертой группы - это служебные функции (играющие роль связок между функциями первых трех групп.
В соответствии с этим в любом приложении выделяются следующие логические компоненты:
· компонент представления, реализующий функции первой группы;
· прикладной компонент, поддерживающий функции второй группы;
· компонент доступа к информационным ресурсам, поддерживающий функции третьей групп, а также вводятся и уточняются соглашения о способах их взаимодействия (протокол взаимодействия).
Различия в реализациях технологии клиент-сервер определяются четырьмя факторами. Во-первых, тем, в какие виды программного обеспечения интегрированы каждый из этих компонентов. Во-вторых, тем, какие механизмы программного обеспечения используются для реализации функций всех трех групп. Во-третьих, как логические компоненты распределяются между компьютерами в сети. В-четвертых, какие механизмы используются для связи компонентов между собой.
Выделяются четыре подхода, реализованные в моделях:
· модель файлового сервера(File Server - FS);
· модель доступа к удаленным данным(Remote Data Access - RDA);
· модель севера базы данных (DataBase Server - DBS);
· модель сервера приложений(Application Server - AS).
Рисунок 2.Модель файлового сервера.
FS-модель является базовой для локальных сетей персональных компьютеров. Не так давно она была исключительно популярной среди отечественных разработчиков, использовавших такие системы, как FoxPRO, Clipper, Clarion, Paradox и т.д. Суть модели проста и всем известна. Один из компьютеров в сети считается файловым сервером и предоставляет услуги по обработке файлов другим компьютерам. Файловый сервер работает под управлением сетевой операционной системы (например, Novell NetWare) и играет роль компонента доступа к информационным ресурсам (то есть к файлам). На других компьютерах в сети функционирует приложение, в кодах которого совмещены компонент представления и прикладной компонент (рис.2). Протокол обмена представляет собой набор низкоуровневых вызовов, обеспечивающих приложению доступ к файловой системе на файл-сервере.
FS-модель послужила фундаментом для расширения возможностей персональных СУБД в направлении поддержки многопользовательского режима. В таких системах на нескольких персональных компьютерах выполняется как прикладная программа, так и копия СУБД, а базы данных содержатся в разделяемых файлах, которые находятся на файловом сервере. Когда прикладная программа обращается к базе данных, СУБД направляет запрос на файловый сервер. В этом запросе указаны файлы, где находятся запрашиваемые данные. В ответ на запрос файловый сервер направляет по сети требуемый блок данных. СУБД, получив его, выполняет над данными действия, которые были декларированы в прикладной программе.
К технологическим недостаткам модели относят высокий сетевой трафик (передача множества файлов, необходимых приложению), узкий спектр операций манипуляции с данными (данные - это файлы), отсутствие адекватных средств безопасности доступа к данным (защита только на уровне файловой системы) и т.д. Собственно, перечисленное не есть недостатки, но - следствие внутренне присущих FS-модели ограничений, определяемых ее характером. Недоразумения возникают, когда FS-модель используют не по назначению, например, пытаются интерпретировать как модель сервера базы данных. Место FS-модели в иерархии моделей клиент-сервер - это место модели файлового сервера, и ничего более. Именно поэтому обречены на провал попытки создания на основе FS-модели крупных корпоративных систем - попытки, которые предпринимались в недавнем прошлом и нередко предпринимаются сейчас.
Рисунок 3.Модель доступа к удаленным данным.
Более технологичная RDA-модельсущественно отличается от FS-модели характером компонента доступа к информационным ресурсам. Это, как правило, SQL-сервер. В RDA-модели коды компонента представления и прикладного компонента совмещены и выполняются на компьютере-клиенте. Последний поддерживает как функции ввода и отображения данных, так и чисто прикладные функции. Доступ к информационным ресурсам обеспечивается либо операторами специального языка (языка SQL, например, если речь идет о базах данных), либо вызовами функций специальной библиотеки (если имеется соответствующий интерфейс прикладного программирования - API).
Клиент направляет запросы к информационным ресурсам (например, к базам данных) по сети удаленному компьютеру. На нем функционирует ядро СУБД, которое обрабатывает запросы, выполняя предписанные в них действия, и возвращает клиенту результат, оформленный как блок данных (рис.3). При этом инициатором манипуляций с данными выступают программы, выполняющиеся на компьютерах-клиентах, в то время как ядру СУБД отводится пассивная роль - обслуживание запросов и обработка данных. В Разделе 2 будет показано, что такое распределение обязанностей между клиентами и сервером базы данных не догма - сервер БД может играть более активную роль, чем та, которая предписана ему традиционной парадигмой.
RDA-модель избавляет от недостатков, присущих как системам с централизованной архитектурой, так и системам с файловым сервером.
Прежде всего перенос компонента представления и прикладного компонента на компьютеры-клиенты существенно разгружает сервер БД, сводя к минимуму общее число процессов операционной системы. Сервер БД освобождается от несвойственных ему функций; процессор или процессоры сервера целиком загружаются операциями обработки данных, запросов и транзакций. Это становится возможным благодаря отказу от терминалов и оснащению рабочих мест компьютерами, которые обладают собственными локальными вычислительными ресурсами, полностью используемыми программами переднего плана. С другой стороны, резко уменьшается загрузка сети, так как по ней передаются от клиента к серверу не запросы на ввод-вывод (как в системах с файловым сервером), а запросы на языке SQL, их объем существенно меньше.
Основное достоинство RDA-модели - унификация интерфейса клиент-сервер в виде языка SQL. Действительно, взаимодействие прикладного компонента с ядром СУБД невозможно без стандартизованного средства общения. Запросы, направляемые программой ядру, должны быть понятны обоим. Для этого их следует сформулировать на специальном языке. Но в СУБД уже существует язык SQL, о котором уже шла речь . Поэтому целесообразно использовать его не только в качестве средства доступа к данным, но и стандарта общения клиента и сервера.
Такое общение можно сравнить с беседой нескольких человек, когда один отвечает на вопросы остальных (вопросы задаются одновременно). Причем делает это он так быстро, что время ожидания ответа приближается к нулю. Высокая скорость общения достигается прежде всего благодаря четкой формулировке вопроса, когда спрашивающему и отвечающему не нужно дополнительных консультаций по сути вопроса. Беседующие обмениваются несколькими короткими однозначными фразами, им ничего не нужно уточнять.
К сожалению, RDA-модель не лишена ряда недостатков. Во-первых, взаимодействие клиента и сервера посредством SQL-запросов существенно загружает сеть. Во-вторых, удовлетворительное администрирование приложений в RDA-модели практически невозможно из-за совмещения в одной программе различных по своей природе функций (функции представления и прикладные). Более подробно о недостатках RDA-модели сказано в п. 2.3.1.
Рисунок 4.Модель сервера базы данных.
Наряду с RDA-моделью все большую популярность приобретает перспективная DBS-модель(рис. 4). Последняя реализована в некоторых реляционных СУБД (Informix, Ingres, Sybase, Oracle). Ее основу составляет механизм хранимых процедур - средство программирования SQL-сервера. Процедуры хранятся в словаре базы данных, разделяются между несколькими клиентами и выполняются на том же компьютере, где функционирует SQL-сервер. Язык, на котором разрабатываются хранимые процедуры, представляет собой процедурное расширение языка запросов SQL и уникален для каждой конкретной СУБД. Более подробно о хранимых процедурах рассказано в п. 2.3.3.
В DBS-модели компонент представления выполняется на компьютере-клиенте, в то время как прикладной компонент оформлен как набор хранимых процедур и функционирует на компьютере-сервере БД. Там же выполняется компонент доступа к данным, то есть ядро СУБД. Достоинства DBS-модели очевидны: это и возможность централизованного администрирования прикладных функций, и снижение трафика (вместо SQL-запросов по сети направляются вызовы хранимых процедур), и возможность разделения процедуры между несколькими приложениями, и экономия ресурсов компьютера за счет использования единожды созданного плана выполнения процедуры. К недостаткам модели можно отнести ограниченность средств, используемых для написания хранимых процедур, которые представляют собой разнообразные процедурные расширения SQL, не выдерживающие сравнения по изобразительным средствам и функциональным возможностям с языками третьего поколения, такими как C или Pascal. Сфера их использования ограничена конкретной СУБД, в большинстве СУБД отсутствуют возможности отладки и тестирования разработанных хранимых процедур.
На практике часто используется смешанные модели, когда поддержка целостности базы данных и некоторые простейшие прикладные функции поддерживаются хранимыми процедурами (DBS-модель), а более сложные функции реализуются непосредственно в прикладной программе, которая выполняется на компьютере-клиенте (RDA-модель). Так или иначе современные многопользовательские СУБД опираются на RDA- и DBS-модели и при создании ИС, предполагающем использование только СУБД, выбирают одну из этих двух моделей либо их разумное сочетание.
Рисунок 5.Модель сервера приложений.
В AS-модели (рис.5) процесс, выполняющийся на компьютере-клиенте, отвечает, как обычно, за интерфейс с пользователем (то есть осуществляет функции первой группы). Обращаясь за выполнением услуг к прикладному компоненту, этот процесс играет роль клиента приложения (Application Client - AC). Прикладной компонент реализован как группа процессов, выполняющих прикладные функции, и называется сервером приложения (Application Server - AS). Все операции над информационными ресурсами выполняются соответствующим компонентом, по отношению к которому AS играет роль клиента. Из прикладных компонентов доступны ресурсы различных типов - базы данных, очереди, почтовые службы и др.
RDA- и DBS-модели опираются на двухзвенную схему разделения функций. В RDA-модели прикладные функции приданы программе-клиенту, в DBS-модели ответственность за их выполнение берет на себя ядро СУБД. В первом случае прикладной компонент сливается с компонентом представления, во-втором - интегрируется в компонент доступа к информационным ресурсам. В AS-модели реализована трехзвенная схема разделения функций, где прикладной компонент выделен как важнейший изолированный элемент приложения, для его определения используются универсальные механизмы многозадачной операционной системы, и стандартизованы интерфейсы с двумя другими компонентами. AS-модель является фундаментом для мониторов обработки транзакций (Transaction Processing Monitors - TPM), или, проще, мониторов транзакций, которые выделяются как особый вид программного обеспечения. Мониторы транзакций - предмет Раздела 4.
В заключение отметим, что, часто, говоря о сервере базы данных, подразумевают как компьютер, так и программное обеспечение - ядро СУБД. При описании архитектуры Клиент-сервер под сервером базы данных мы имели в виду компьютер. Далее сервер базы данных будет пониматься как программное обеспечение - ядро СУБД.
46. Модель файлового сервера.
Модель файлового сервера является наиболее простой и характеризует не столько способ образования информационной системы, сколько общий способ взаимодействия компьютеров в локальной сети. Один из компьютеров сети выделяется и определяется файловым сервером, т. е. общим хранилищем любых данных. Суть FS- модели иллюстрируется схемой, приведенной на рис. 5.3.
Рис 5.3 - Модель файлового сервера
В FS-модели все основные компоненты размещаются на клиентской установке. При обращении к данным ядро СУБД, в свою очередь, обращается с запросами на ввод-вывод данных за сервисом к файловой системе. С помощью функций операционной системы в оперативную память клиентской установки полностью или частично на время сеанса работы копируется файл базы данных. Таким образом, сервер в данном случае выполняет чисто пассивную функцию.
Достоинством данной модели являются ее простота, отсутствие высоких требований к производительности сервера (главное, требуемый объем дискового пространства). Следует также отметить, что программные компоненты СУБД в данном случае не распределены, т.е. никакая часть СУБД на сервере не инсталлируется и не размещается.
Недостатки данной модели - высокий сетевой трафик, достигающий пиковых значений особенно в момент массового вхождения в систему пользователей, например в начале рабочего дня. Однако более существенным недостатком, с точки зрения работы с общей базой данных, является отсутствие специальных механизмов безопасности файла (файлов) базы данных со стороны СУБД. Иначе говоря, разделение данных между пользователями (параллельная работа с одним файлом данных) осуществляется только средствами файловой системы ОС для одновременной работы нескольких прикладных программ с одним файлом.
Несмотря на очевидные недостатки, модель файлового сервера является естественным средством расширения возможностей персональных (настольных) СУБД в направлении поддержки многопользовательского режима и, очевидно, в этом плане еще будет сохранять свое значение
47. Модель удалённого доступа к данным.
Модель удаленного доступа к данным основана на учете специфики размещения и физического манипулирования данных во внешней памяти для реляционных СУБД. В RDA-модели компонент доступа к данным в СУБД полностью отделен от двух других компонентов (компонента представления и прикладного компонента) и размещается на сервере системы.
Компонент доступа к данным реализуется в виде самостоятельной программной части СУБД, называемой SQL-сервером, и инсталлируется на вычислительной установке сервера системы. Функции SQL-сервера ограничиваются низкоуровневыми операциями по организации, размещению, хранению и манипулированию данными в дисковой памяти сервера. Иначе говоря, SQL-сервер играет роль машины данных. Схема RDA-модели приведена на рис. 5.4.
Рис 5.4. Модель удаленного доступа к данным (RDA-модель)
В файле (файлах) базы данных, размещаемом на сервере системы, находится также и системный каталог базы данных, в который помещаются в том числе и сведения о зарегистрированных клиентах, их полномочиях и т. п.
На клиентских установках инсталлируются программные части СУБД, реализующие интерфейсные и прикладные функции. Пользователь, входя в клиентскую часть системы, регистрируется через нее на cepвере системы и начинает обработку данных.
Прикладной компонент системы (библиотеки запросов, процедуры обработки данных) полностью размещается и выполняется на клиентской установке. При реализации своих функций прикладной компонент формирует необходимые SQL-инструкции, направляемые SQL-серверу. SQL-сервер, представляющий специальный программный компонент, ориентированный на интерпретацию SQL-инструкций и высокоскоростное выполнение низкоуровневых операций с данными, принимает и координирует SQL-инструкции от различных клиентов, выполняет их, проверяет и обеспечивает выполнение ограничений целостности данных и направляет клиентам результаты обработки SQL-инструкций, представляющие, как известно, наборы (таблицы) данных.
Таким образом, общение клиента с сервером происходит через SQL-инструкции, а с сервера на клиентские установки передаются только результаты обработки, т. е. наборы данных, которые могут быть существенно меньше по объему всей базы данных. В результате резко уменьшается загрузка сети, а сервер приобретает активную центральную функцию. Кроме того, ядро СУБД в виде SQL-сервера обеспечивает также традиционные и важные функции по обеспечению ограничений целостности и безопасности данных при совместной работе нескольких пользователей.
Другим, может быть неявным, достоинством RDA-модели является унификация интерфейса взаимодействия прикладных компонентов информационных систем с общими данными. Такое взаимодействие стандартизовано в рамках языка SQL специальным протоколом ODBC (Open Database Connectivity - открытый доступ к базам данных), играющим важную роль в обеспечении интероперабельности (многопротокольность), т.е. независимости от типа СУБД на клиентских установках в распределенных системах.
Интероперабельность (многопротокольность) СУБД - способность СУБД обслуживать прикладные программы, первоначально ориентированные на разные типы СУБД. Иначе говоря, специальный компонент ядра СУБД на сервере (так называемый драйвер ODBC) способен воспринимать, обрабатывать запросы и направлять результаты их обработки на клиентские установки, функционирующие под управлением реляционных СУБД других, не "родных" типов.
Такая возможность существенно повышает гибкость в создании распределенных информационных систем на базе интеграции уже существующих в какой-либо организации локальных баз данных под управлением настольных или другого типа реляционных СУБД.
К недостаткам RDA-модели можно отнести высокие требования к клиентским вычислительным установкам, так как прикладные программы обработки данных, определяемые спецификой предметной области информационной системы, выполняются на них.
Другим недостатком является все же существенный трафик сети, обусловленный тем, что с сервера базы данных клиентам направляются наборы (таблицы) данных, которые в определенных случаях могут занимать достаточно существенный объем.
48. Модель сервера баз данных.
Развитием PDA-модели стала модель сервера базы данных. Ее сердцевиной является механизм хранимых процедур. В отличие от PDA-модели, определенные для конкретной предметной области информационной системы события, правила и процедуры, описанные средствами языка SQL, хранятся вместе с данными на сервере системы и на нем же выполняются. Иначе говоря, прикладной компонент полностью размещается и выполняется на сервере системы. Схематично DBS-модель приведена на рис. 2.5.
Рис. 5.5 Модель сервера базы данных (DBS-модель)
На клиентских установках в DBS-модели размещается только интерфейсный компонент (компонент представления), что существенно снижает требования к вычислительной установке клиента. Пользователь через интерфейс системы на клиентской установке направляет на сервер базы данных только лишь вызовы необходимых процедур, запросов и других функций по обработке данных. Все затратные операции по доступу и обработке данных выполняются на сервере и клиенту направляются лишь результаты обработки, а не наборы данных, как в RDA-модели. Этим обеспечивается существенное снижение трафика сети в DBS-модели по сравнению с RDA -моделью.
Следует заметить, что на сервере системы выполняются процедуры прикладных задач одновременно всех пользователей системы. В результате резко возрастают требования к вычислительной установке сервера, причем как к объему дискового пространства и оперативной памяти, так и к быстродействию. Это основной недостаток DBS-модели.
К достоинствам же DBS-модели, помимо разгрузки сети, относится и более активная роль сервера сети, размещение, хранение и выполнение на нем механизма событий, правил и процедур, возможность более адекватно и эффективно "настраивать" распределенную информационную систему на все нюансы предметной области.
Также более надежно обеспечивается согласованность состояния и изменения данных и, вследствие этого, повышается надежность хранения и обработки данных, эффективно координируется коллективная работа пользователей с общими данными.
Модель сервера приложений
Чтобы разнести требования к вычислительным ресурсам сервера в отношении быстродействия и памяти по разным вычислительным установкам, используется модель сервера приложений.
Суть AS-модели заключается в переносе прикладного компонента информационной системы на специализированный в отношении повышенных ресурсов по быстродействию дополнительный сервер системы. Схема AS-модели приведена на рис. 5.6
Рис. 5.6. Модель сервера приложений (AS-модель)
Как и в DBS-модели, на клиентских установках располагается только интерфейсная часть системы, т. е. компонент представления. Однако вызовы функций обработки данных направляются на сервер приложений, где эти функции совместно выполняются для всех пользователей системы. За выполнением низкоуровневых операций по доступу и изменению данных сервер приложений, как в RDA-модели, обращается к SQL-серверу, направляя ему вызовы SQL-процедур, и получая, соответственно, от него наборы данных.
Как известно, последовательная совокупность операций над данными (SQL-инструкций), имеющая отдельное смысловое значение, называетсятранзакцией.
В этом отношении сервер приложений управляет формированием транзакций, которые выполняет SQL-сервер. Поэтому программный компонент СУБД, инсталлируемый на сервере приложений, еще называют монитором обработки транзакций (Transaction Processing Monitors - TRM), или просто монитором транзакций.
AS-модель, сохраняя сильные стороны DBS-модели, позволяет оптимально построить вычислительную схему информационной системы, однако, как и в случае RDA-модели, повышает трафик сети.
В практических случаях используются смешанные модели, когда простейшие прикладные функции и обеспечение ограничений целостности данных под