Переход от ER – модели к реляционной.
Переход от инфологической модели “сущность-связь” - это сравнительно простая задача, поскольку в терминологии и принципах ER-модели и реляционного подхода имеется взаимно однозначное соответствие. Существует ряд хорошо зарекомендовавших себя правил, с помощью которых из ER-диаграмм откроются реляционные таблицы.
Каждая простая сущность превращается в таблицу. Простая сущность - сущность, не являющаяся подтипом и не имеющая подтипов. Имя сущности становится именем таблицы.
Каждый атрибут становится возможным столбцом с тем же именем; может выбираться более точный формат. Столбцы, соответствующие необязательным атрибутам, могут содержать неопределенные значения; столбцы, соответствующие обязательным атрибутам – не могут.
Компоненты уникального идентификатора сущности превращаются в первичный ключ таблицы. Если имеется несколько возможных уникальных идентификатора, выбирается наиболее используемый. Если в состав уникального идентификатора входят связи, к числу столбцов первичного ключа добавляется копия уникального идентификатора сущности, находящейся на дальнем конце связи (этот процесс может продолжаться рекурсивно). Для именования этих столбцов используются имена концов связей и/или имена сущностей.
Связи многие-к-одному (и один-к-одному) становятся внешними ключами. Т.е. делается копия уникального идентификатора с конца связи "один", и соответствующие столбцы составляют внешний ключ. Необязательные связи соответствуют столбцам, допускающим неопределенные значения; обязательные связи - столбцам, не допускающим неопределенные значения.
Индексы создаются для первичного ключа (уникальный индекс), внешних ключей и тех атрибутов, на которых предполагается в основном базировать запросы.
Если в концептуальной схеме присутствовали подтипы, то возможны два способа: все подтипы в одной таблице (а) или для каждого подтипа - отдельная таблица (б). При применении способа (а) таблица создается для наиболее внешнего супертипа, а для подтипов могут создаваться представления. В таблицу добавляется, по крайней мере, один столбец, содержащий код ТИПА; он становится частью первичного ключа. При использовании метода (б) для каждого подтипа первого уровня (для более нижних - представления) супертип воссоздается с помощью представления UNION (из всех таблиц подтипов выбираются общие столбцы - столбцы супертипа).
Имеется два способа работы при наличии исключающих связей: общий столбец и явные внешние ключи (б). Если остающиеся внешние ключи все в одном домене, т.е. имеют общий формат (способ (а)), то создаются два столбца: идентификатор связи и идентификатор сущности. Столбец идентификатора связи используется для различения связей, покрываемых дугой исключения. Столбец идентификатора сущности используется для хранения значений уникального идентификатора сущности на дальнем конце соответствующей связи. Если результирующие внешние ключи не относятся к одному домену, то для каждой связи, покрываемой дугой исключения, создаются явные столбцы внешних ключей; все эти столбцы могут содержать неопределенные значения.
4. Физические модели.
Физическая модель данных – модель, определяющая размещение данных на внешних носителях, методы доступа и технику индексирования. Она так же называется внутренней моделью системы.
Внешние модели (даталогические модели) никак не связаны с типом физической памяти, в которой будут храниться данные, и с методами доступа к этим данным. Внутренние модели (физические модели) наоборот определяют и оперируют размещением данных и их взаимосвязях на запоминающих устройствах.
Физическая организация данных оказывает основное влияние на эксплуатационные характеристики БД. Разработчики СУБД пытаются создать наиболее производительные физические модели данных, предлагая пользователям тот или иной инструментарий для поднастройки модели под конкретную БД. Существует большое разнообразие способов реализации и корректировки физических моделей современных промышленных БД, что не позволяет рассмотреть их подробно.
Физическая модель данных является полностью компьютерно-ориентированной и конечные пользователи, а порой и прикладные программисты, не имеют никакого представления о том, каким образом данные запоминаются и извлекаются или каким способом организуются индексы в таблицах для быстрого поиска или ссылочная целостность. Эти и множество других функций по методам доступа и поддержании баз данных на внешних носителях, а также способов поиска и доступа к данным в современных СУБД обеспечивается в основном ядром базы данных, что значительно облегчает задачу создания БД и их ведение.
Трехуровневая архитектура (инфологический, даталогический и физический уровни) позволяет обеспечить независимость хранимых данных от использующих их программ. А БД может при необходимости переписать хранимые данные на другие носители информации и (или) реорганизовать их физическую структуру, изменив лишь физическую модель данных. АБД может подключить к системе любое число новых пользователей (новых приложений), дополнив, если надо, даталогическую модель. Указанные изменения физической и даталогической моделей не будут замечены существующими пользователями системы (окажутся «прозрачными» для них), так же как не будут замечены и новые пользователи. Следовательно, независимость данных обеспечивает возможность развития системы баз данных без разрушения существующих приложений.
5. Иерархическая модель.
Иерархическая модель данных — это модель данных, где используется представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней.
Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня), при этом возможна ситуация, когда объект-предок не имеет потомков или имеет их несколько, тогда как у объекта-потомка обязательно только один предок. Объекты, имеющие общего предка, называются близнецами (в программировании применительно к структуре данных дерево устоялось название братья).
Базы данных с иерархической моделью одни из самых старых, и стали первыми системами управления базами данных для мейнфреймов. Разрабатывались в 1950-х и 1960-х, например, Information Management System (IMS)[1] фирмы IBM.
Например, если иерархическая база данных содержала информацию о покупателях и их заказах, то будет существовать объект «покупатель» (родитель) и объект «заказ» (дочерний). Объект «покупатель» будет иметь указатели от каждого заказчика к физическому расположению заказов покупателя в объект «заказ».
В этой модели запрос, направленный вниз по иерархии, прост (например, какие заказы принадлежат этому покупателю); однако запрос, направленный вверх по иерархии, более сложен (например, какой покупатель поместил этот заказ). Также, трудно представить не-иерархические данные при использовании этой модели.
Иерархической базой данных является файловая система, состоящая из корневого каталога, в котором имеется иерархия подкаталогов и файлов.