Интерфейсы устройств хранения

КУРСОВАЯ РАБОТА

Тема: Аппаратные интерфейсы ПК

Профессия / специальность
Наладчик АО и ПО

(Шифр, наименование)

Выполнил (а)

Патраков Иван Сергеевич
Очная
1 курс 135/6 группы
«________»____________________20____г.  

(Ф.И.О., форма обучения, курс, № группы, подпись, дата)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 3

1.Интерфейсы Блока питания ПК.. 4

2. Интерфейс ATA/ATAPI (IDE) 5

3. Радиоинтерфейс Bluetooth. 7

4. Интерфейс Fibre Channel 9

5. Интерфейсы устройств хранения. 11

6. Параллельные интерфейсы SCSI 13

7. Интерфейс LPC.. 14

8. Интерфейсы Электронной памяти 15

9. Интерфейс клавиатуры.. 16

10. Интерфейсы мыши. 17

11. Интерфейсы принтеров и плоттеров. 17

ЛИТЕРАТУРА.. 23

ВВЕДЕНИЕ


Толковый словарь по вычислительным системам определяет понятие интерфейс (interface) как границу раздела двух систем, устройств или программ; элементы соединения и вспомогательные схемы управления, используемые для соединения устройств. Рассмотрим вкратце основные свойства интерфейсов.

По способу передачи информации интерфейсы подразделяются на параллельные и последовательные. В параллельном интерфейсе все биты передаваемого слова (обычно байта) выставляются и передаются по соответствующим параллельно идущим проводам одновременно. В PC традиционно используется параллельный интерфейс Centronics, реализуемый LPT-портами, шины ATA, SCSI и все шины расширения. В последовательном интерфейсе биты передаются друг за другом, обычно по одной (возможно, и двухпроводной) линии. Эта линия может быть как однонаправленной (например, в RS-232C, реализуемой СОМ-портом, шине Fire Wire, SPI, JTAG) так и двунаправленной (USB, I²C).

При рассмотрении интерфейсов важным параметром является пропускная способность.

Важным свойством интерфейса, на которое часто не обращают внимание, является гальваническая развязка, а точнее — ее отсутствие «Схемные земли» устройств, соединяемых интерфейсом с СОМ- или LPT-портом PC, оказываются связанными со схемной землей компьютера (а через интерфейсный кабель и между собой). Если между ними до подключения интерфейса была разность потенциалов, то по общему проводу интерфейса потечет уравнивающий ток.

Интерфейсы блока питания PC


Блок питания PC обеспечивает напряжениями постоянного тока системный блок со всеми его сложными и часто «привередливыми» устройствами. С самых первых моделей PC здесь применяется двухтактная схема преобразователя с бестрансформаторным входом; без революционных изменений эта схема дошла и до наших дней. Преобразователь является регулирующим элементом стабилизатора напряжения основного источника +5 В. Остальные напряжения могут быть стабилизированы дополнительными выходными стабилизаторами, но чаще их оставляют нестабилизированными. При этом чем больше нагрузка блока по основной (стабилизированной) цепи, тем выше напряжения на остальных шинах.

Блоки питания PC не критичны к частоте сети (50 или 60 Гц) и могут работать даже от сети постоянного тока

Блок питания PC обычно имеет стандартный конструктив и набор жгутов с разъемами питания системной платы и периферийных устройств.

♦ СОМ — черный (соответствует цепи GND традиционных блоков);

♦ +5V — красный;

♦ +12V — желтый;

♦ -5V — белый;

♦ -12V — синий;

♦ +3.3V — оранжевый;

♦ +3.3V Sense — коричневый (может подходить к контакту 11);

♦ +5VSB — Фиолетовый;

♦ PS-ON — зеленый;

♦ PW-ON — серый.

Дополнительный разъем:

♦ +3.3V Sense — белый с коричневыми полосками;

♦ FanC — белый с синими полосками;

♦ FanM — белый;

♦ 1394V — белый с красными полосками;

♦ 1394R — белый с черными полосками.

Интерфейс ATA/ATAPI (IDE)


Интерфейс ATA (AT Attachment for Disk Drives) разрабатывался в 1986–1990 гг. для подключения накопителей на жестких магнитных дисках к компьютерам IBM PC AT с шиной ISA. Стандарт, выработанный комитетом X3T10, определяет набор регистров устройств и назначение сигналов 40-контактного интерфейсного разъема. Интерфейс появился в результате переноса стандартного (для PC/AT) контроллера жесткого диска ближе к накопителю, то есть создания устройств со встроенным контроллером — IDE (Integrated Drive Electronics). Стандартный контроллер AT позволял подключать до двух накопителей, что в интерфейсе ATA означает параллельное подключение контроллеров двух устройств. В спецификации ATA фигурируют следующие компоненты.

♦ Хост-адаптер — средства сопряжения интерфейса ATA с шиной компьютера. Хостом мы будем называть компьютер с хост-адаптером интерфейса ATA. Хост-контроллер — более развитый вариант хост-адаптера.

♦ Ведущее устройство (Master) — ПУ, в спецификации ATA официально называемое Device-0 (устройство 0).

♦ Ведомое устройство (Slave) — ПУ, в спецификации официально называемое Device-1 (устройство 1).

Хост-адаптер и устройства объединяются кабелем-шлейфом, соединяющим параллельно одноименные контакты интерфейсных разъемов. Регистры обоих контроллеров оказываются расположенными в одних и тех же областях пространства ввода-вывода. Для выбора устройства, исполняющего текущую команду, используется бит выбора накопителя (DEV) в регистре номера устройства и головки (drive/head register). Если бит DEV=0, выбрано ведущее устройство, если DEV=1 — ведомое. Запись в этот регистр воспринимается сразу обоими устройствами, на обращения к остальным регистрам реагирует только выбранное. Достаточно универсальный набор сигналов позволяет подключать любое устройство со встроенным контроллером, которому в пространстве портов ввода-вывода достаточно того же набора регистров, способное поддержать режим выбора устройства через вышеупомянутый бит. Принятая система команд и регистров, являющаяся частью спецификации ATA, ориентирована на блочный обмен данными с устройствами прямого доступа. Для иных устройств существует спецификация ATAPI, основанная на тех же аппаратных средствах, но позволяющая обмениваться пакетами управляющей информации (Package Interface, PI). Структура и наполнение пакетов позаимствованы из универсального интерфейса SCSI. Пакетный интерфейс позволяет расширить границы применения шины ATA.

Адресация в ATA имеет «дисковые корни»: для накопителей изначально указывали адрес цилиндра (cylinder), головки (head) и сектора (sector) — так называемая трехмерная адресация CHS. Сначала эта адресация точно соответствовала реальной геометрии — физически сектор действительно находился по указанному адресу. Позже по ряду причин диски ATA стали описывать внешней геометрией, отличающейся от реальной внутренней (например, разные зоны треков имеют разное число секторов, причем часть секторов может резервироваться на случай замены дефектных). При этом одно и то же устройство может иметь различную внешнюю геометрию. Преобразование адресов в реальные выполняется встроенным контроллером устройства. В системе CHS устройство ATA позволяет адресовать до 267 386 880 (65 536×16×255) секторов (блоков), что при размере сектора в 512 байт дает 136 902 082 560 байт (около 137 Гбайт). Позже пришли к линейной адресации логических блоков LBA (Logical Block Addressing), где адрес блока (сектора) определяется 28-битным числом, что позволяет адресовать до 268 435 455 (228) блоков (немного больше, чем в CHS). Для устройств ATА, поддерживающих и CHS, и LBA, режим адресации определяется для каждой команды битом L (бит 6) регистра D/H; режимы могут чередоваться произвольным образом. Устройства ATAPI используют принятую в SCSI 32-битную логическую адресацию, позволяющую адресовать до 2 Тбайт (при 512-байтном блоке).

Если к шине ATA подключено одно устройство, оно должно быть ведущим. Если подключены два устройства, одно должно быть ведущим, другое — ведомым. О своей роли (ведущее или ведомое) устройства «узнают» с помощью предварительно установленных конфигурационных джамперов. Если применяется «кабельная выборка» (см. ниже), роль устройства определяется его положением на специальном ленточном кабеле. Оба устройства воспринимают команды от хост-адаптера одновременно. Однако исполнять команду будет лишь выбранное устройство. Выводить выходные сигналы на шину ATA имеет право только выбранное устройство. Такая система подразумевает, что, начав операцию обмена с одним из устройств, хост-адаптер не может переключиться на обслуживание другого до завершения начатой операции. Параллельно могут работать только устройства IDE, подключаемые к разным шинам (каналам) ATA. Спецификация ATA-4 определяет способ обхода этого ограничения, но эту возможность используют редко.

Для устройств IDE существует несколько разновидностей интерфейса.

♦ ATA, он же AT-BUS, — 16-битный интерфейс подключения к шине компьютера AT. Наиболее распространенный 40-проводный сигнальный и 4-проводный питающий интерфейс для подключения дисковых накопителей к компьютерам AT. Для миниатюрных (2,5" и менее) накопителей используют 44-проводный кабель, по которому передается и питание.

♦ PC Card ATA — 16-битный интерфейс с 68-контактным разъемом PC Card (PCMCIA) для подключения к блокнотным PC.

♦ XT IDE (8 бит), он же XT-BUS, — 40-проводный интерфейс, похожий на ATA, но несовместимый с ним.

♦ MCA IDE (16 бит) — 72-проводный интерфейс, предназначенный специально для шины и накопителей PS/2.

♦ ATA-2 — расширенная спецификация ATA. Включает 2 канала, 4 устройства, PIO Mode 3, Multiword DMA Mode 1, Block mode, объем диска до 8 Гбайт, поддержка LBA и CHS.

♦ Fast ATA-2 разрешает использовать Multiword DMA Mode 2 (13,3 Мбайт/с), PIO Mode 4.

♦ ATA-3 — расширение ATA-2. Включает средства парольной защиты, улучшенного управления питанием, самотестирования с предупреждением приближения отказа — SMART (Self Monitoring Analysis and Report Technology).

♦ ATA/ATAPI-4 — расширение ATA-3, включающее режим Ultra DMA со скоростью обмена до 33 Мбайт/с и пакетный интерфейс ATAPI. Появляется поддержка очередей и возможность перекрытия команд.

♦ ATA/ATAPI-5 — ревизия ATA/ATAPI-4: удаляются устаревшие команды и биты, добавляются новые возможности защиты и управления энергопотреблением. Включает режим Ultra DMA со скоростью обмена до 66 Мбайт/с.

♦ ATA/ATAPI-6 — дополнения к ATA/ATAPI-5: потоковое расширение для чтения/записи аудио- и видеоданных, управление акустическим шумом, режим Ultra DMA со скоростью обмена до 100 Мбайт/с.

♦ Serial ATA — последовательный интерфейс.

♦ E-IDE (Enhanced IDE) — расширенный интерфейс, введенный фирмой Western Digital. Реализуется в адаптерах для шин PCI и VLB. Позволяет подключать до 4 устройств (к двум каналам), включая CD-ROM и стриммеры (ATAPI). Поддерживает PIO Mode 3, Multiword DMA Mode 1, объем диска до 8 Гбайт, LBA и CHS. С аппаратной точки зрения практически полностью соответствует спецификации ATA-2.

Устройства ATA IDE, E-IDE, ATA-2, Fast ATA-2, ATA-3, ATA/ATAPI-4, ATA/ATAPI-5 и ATA/ATAPI-6 электрически совместимы. Степень логической совместимости достаточно высока (все базовые возможности ATA доступны). Однако для полного использования всех расширений необходимо соответствие спецификаций устройств, хост-адаптера и его ПО.

Разработкой спецификаций ATA/ATAPI занимается технический комитет T13 американского Национального Комитета но стандартизации в области информационных технологий (NCITS). Разработанные им спецификации оформляются в виде стандартов ANSI. Спецификация ATA/ATAPI-6 объявлена последней версией параллельного интерфейса ATA, за которой следует последовательный интерфейс Serial ATA.

Радиоинтерфейс Bluetooth


Bluetooth (синий зуб) — это фактический стандарт на миниатюрные недорогие средства передачи информации с помощью радиосвязи между мобильными (и настольными) компьютерами, мобильными телефонами и любыми другими портативными устройствами на небольшие расстояния. Разработкой спецификации занимается группа лидирующих фирм в областях телекоммуникаций, компьютеров и сетей — 3Com, Agere Systems, Ericsson, IBM, Intel, Microsoft, Motorola, Nokia, Toshiba. Эта группа, образовавшая Bluetooth Special Interest Group, и вывела данную технологию на рынок. Спецификация Bluetooth свободно доступна в Сети (www.bluetooth.com), правда, она весьма объемна (около 15 Мбайт PDF-файлов). Открытость спецификации должна способствовать ее быстрому распространению, что уже и наблюдается на практике. Здесь позволим себе сократить название технологии до «ВТ» (это не официальное сокращение). Само название представляет собой прозвище датского короля, объединившего Данию и Норвегию, — намек на всеобщую объединяющую роль технологии.

Каждое устройство ВТ имеет радиопередатчик и приемник, работающие в диапазоне частот 2,4 ГГц. Этот диапазон в большинстве стран отведен для промышленной, научной и медицинской аппаратуры и не требует лицензирования, что обеспечивает повсеместную применимость устройств. Для ВТ используются радиоканалы с дискретной (двоичной) частотной модуляцией, несущая частота каналов F=2402+k (МГц), где k=0, …, 78. Для нескольких стран (например, Франции, где в этом диапазоне работают военные) возможен сокращенный вариант с F-2454+k (k=0, …, 22). Кодирование простое — логической единице соответствует положительная девиация частоты, нулю — отрицательная. Передатчики могут быть трех классов мощности, с максимальной мощностью 1, 2,5 и 100 МВт, при чем должна быть возможность понижения мощности с целью экономии энергии.

Передача ведется с перескоком несущей частоты с одного радиоканала на другой, что помогает в борьбе с интерференцией и замираниями сигнала. Физический канал связи представляется определенной псевдослучайной последовательностью используемых радиоканалов (79 или 23 возможных частот). Группа устройств, разделяющих один канал (то есть «знающих» одну и ту же последовательность перескоков), образует так называемую пикосеть (piconet), в которую может входить от 2 до 8 устройств. В каждой пикосети имеется одно ведущее устройство и до 7 активных ведомых. Кроме того, в зоне охвата ведущего устройства в его же пикосети могут находиться «припаркованные» ведомые устройства: они тоже «знают» последовательность перескоков и синхронизируются (по перескокам) с ведущим устройством, но не могут обмениваться данными до тех пор, пока ведущее устройство не разрешит их активность. Каждое активное ведомое устройство пикосети имеет свой временный номер (1–7); когда ведомое устройство деактивируется (паркуется), оно отдает свой номер для использования другими. При последующей активизации оно уже может получить иной номер (потому-то он и временный). Пикосети могут перекрываться зонами охвата, образуя «разбросанную» сеть (scatternet). При этом в каждой пикосети ведущее устройство только одно, но ведомые устройства могут входить в несколько пикосетей, используя раз деление времени (часть времени он работает в одной, часть — в другой пикосети). Более того, ведущее устройство одной пикосети может быть ведомым устройством другой пикосети. Эти пикосети никак не синхронизированы, каждая из них использует свой канал (последовательность перескоков).

Интерфейс Fibre Channel


Кроме параллельного интерфейса, SCSI-3 может использовать и последовательный интерфейс Fibre (Fiber) Channel, или FCAL (Fibre Channel Arbitrated Loop — кольцо волоконного канала с арбитражем), который занимает промежуточное положение между интерфейсами периферийных устройств (SCSI-3) и технологиями локальных сетей. Этот интерфейс может иметь как электрическую (коаксиальный кабель), так и оптоволоконную реализацию. В обоих случаях частота 1 ГГц обеспечивает скорость передачи данных 100 Мбайт/с. Медный кабель допускает длину шины до 30 м, оптический — до 10 км. Здесь используется иной протокольный и физический уровни интерфейса и имеется возможность подключения к шине до 126 устройств (а не 8 или 16, как для параллельного интерфейса). Для двухточечного соединения возможен полнодуплексный режим (200 Мбайт/с), что невозможно в обычных параллельных шинах. Недавно фирма Adaptec выпустила адаптер со скоростью 2 Гбит/с (и оптика, и медь), обратно совместимый с обычным (1 Гбит/с). В полнодуплексном режиме достигается суммарная пропускная способность 400 Мбайт/с. В кольцо может объединяться до 126 узлов, длина кольца может достигать 10 км. По организации кольцо напоминает FDDI — все узлы собираются в замкнутую цепочку и транслируют приходящие кадры дальше по кольцу. Синхронизация передатчика каждого узла автономна, а для компенсации расхождения частот синхронизации используются межкадровые слова-заполнители, часть из которых может периодически отбрасываться или вводиться дополнительно при трансляции. Для обеспечения надежной передачи применяется кодирование 8В/10B, для скорости 100 Мбайт/с с учетом накладных расходов на обрамление кадров требуется битовая скорость в линии 1,0625 Гбит/с. Архитектурная модель FCAL состоит из пяти уровней FC-0…FC-4, нижний (FC-0) определяет среду передачи (оптоволокно или твинаксиальный кабель) и физический интерфейс. Верхний уровень (FC-4) определяет протоколы отображения, относящиеся как к интерфейсам периферийных устройств (SCSI и некоторые другие), так и к сетям (802.2 и IP). Информация по кольцу передается кадрами размером 36-2148 байт. Обмен данными между устройствами возможен как с установлением соединений, так и без них. Одновременно может быть открыто множество соединений, причем относящихся к разным протоколам (например, SCSI и IP). Аппаратура Fibre Channel включает интерфейсные адаптеры, концентраторы, коммутаторы и маршрутизаторы. Интерфейсные адаптеры представляют собой карты для компьютеров (для высокопроизводительных шин, например PCI). С интерфейсом FCAL выпускаются устройства хранения данных (дисковые и ленточные накопители, массивы накопителей). Концентраторы для FCAL в принципе необязательны, но они позволяют организовать кольцо на звездообразной топологии и обеспечить обход отказавших (отключенных) узлов — без них кольцо становится уязвимым при отказе линии или устройства. Коммутаторы (как, например, в технологии Ethernet) позволяют для группы подключенных устройств организовывать соединения «каждый с каждым», что эффективно, например, в случае разделения (совместного использования) несколькими серверами нескольких устройств хранения. Маршрутизаторы или мосты позволяют соединять FCAL с другими средами передачи информации (например, с классическим интерфейсом SCSI или со средами локальных сетей). В настоящее время FCAL применяется для подключения устройств внешней памяти к серверам, когда требуется высокая производительность и значительное удаление устройств друг от друга. В принципе, FCAL позволяет организовывать разделение ресурсов, обеспечивая и резервирование линий связи, но здесь пока имеются сложности на уровне операционных систем.

Интерфейс LPC


Интерфейс LPC (Low Pin Count — малое число выводов) предназначен для локального подключения устройств, ранее использовавших шину X-Bus или ISA: контроллеров НГМД, последовательных и параллельных портов, клавиатуры, аудиокодека, BIOS и т.п. Введение нового интерфейса обусловлено изживанием шины ISA с ее большим числом сигналов и неудобной асинхронностью. Интерфейс обеспечивает те же циклы обращения, что и ISA: чтение-запись памяти и ввода-вывода, DMA и прямое управление шиной (bus mastering). Устройства могут вырабатывать запросы прерываний. В отличие от ISA/X-Bus с их 24-битной шиной адреса, обеспечивающей адресацию лишь в пределах первых 16 Мбайт памяти, интерфейс LPC имеет 32-битную адресацию памяти, что обеспечивает доступ к 4 Гбайт памяти. 16-битная адресация портов обеспечивает доступ ко всему пространству 64 К портов. Интерфейс синхронизирован с шиной PCI, но устройства могут вводить произвольное число тактов ожидания. Интерфейс программно прозрачен — как и для ISA/X-Bus, не требует каких-либо драйверов. Контроллер интерфейса LPC является устройством-мостом PCI. По пропускной способности интерфейс практически эквивалентен этим шинам. В спецификации LPC 1.0 приводится расчет пропускной способности интерфейса и устройств, его использующих. При наличии буферов FIFO интерфейс наиболее выгодно использовать в режиме DMA. В этом случае главным потребителем будет LPT-порт — при скорости передачи данных 2 Мбайт/с, он займет 47% полосы интерфейса. Следующим будет инфракрасный порт — 4 Мбит/с (11,4%). Остальным устройствам (контроллер НГМД, СОМ-порт, аудиокодек) требуются еще меньшие доли, в результате они занимают до 75% полосы при одновременной работе. Таким образом, перевод этих устройств с ISA/X-Bus на LPC не должен вызывать проблем производительности более острых, чем были на старых шинах.

Интерфейс имеет всего 7 обязательных сигналов:

♦ LAD [3:0] — двунаправленная мультиплексированная шина данных;

♦ LFRAME# — индикатор начала и конца цикла, управляемый хостом;

♦ LRESET# — сигнал сброса, тот же, что и RST# на шине PCI;

♦ LCLK — синхронизация (33 Мгц), тот же сигнал, что и CLK на шине PCI;

Дополнительные сигналы интерфейса LPC:

♦ LDRQ# — кодированный запрос DMA/Bus Master от периферии;

♦ SERIRQ — линия запросов прерывания (в последовательном коде), используется, если нет стандартных линий запросов IRQ в стиле ISA;

♦ CLKRUN# — сигнал, используемый для указания на остановку шины (в мобильных системах), требуется только для устройств, нуждающихся в DMA/BusMaster в системах, способных останавливать шину PCI;

♦ РМЕ# — событие системы управления потреблением (Power Management Event), может вводиться периферией, как и в PCI;

♦ LPCPD# — Power Down, указание от хоста устройствам на подготовку к выключению питания;

♦ LSMI# — запрос прерывания SMI# для повтора инструкции ввода-вывода.

Сигналы LFRAME# и LAD [3:0] синхронизированы (являются действительными) по фронту LCLK. По шине LAD [3:0] в каждом такте цикла передаются поля элементов протокола. Обобщенная временная диаграмма цикла обмена по LPC приведена на рис. 6.15. Начало каждого цикла хост отмечает сигналом LFRAME#, помещая на шину LAD [3:0] поле START. По сигналу LFRAME# все ПУ должны прекратить управление шиной LAD [3:0], а по коду поля START они должны декодировать последующие события как цикл шины. В следующем такте хост снимет сигнал LFRAME# и поместит на шину LAD [3:0] код типа цикла CYCTYPE. Сигнал LFRAME# может длиться и более одного такта, но признаком начала цикла (поля START) является последний такт перед снятием сигнала. С помощью сигнала LFRAME# хост может принудительно прервать цикл (например, по ошибке тайм-аута), выставив соответствующий код.

Динамическая память

  Асинхронная память — FPM, EDO и BEDO DRAM

Память Rambus DRAM

Статическая память

Энергонезависимая память

EEPROM и флэш-память

Интерфейс клавиатуры


Благодаря видеокарте мы можем видеть изображение на мониторе. Для компьютера, установленного в офисе, достаточно интегрированной в материнскую плату видеокарты. Но для геймеров, дизайнеров и пр. такой видеокарты будет мало.
Видеокарта – это компьютер в компьютере, у нее есть своя «оперативка», процессор, система охлаждения. Скорость работы видеокарты зависит от ее объема и «битности» ее процессора. Меняя видеокарту на более мощную, нужно обратить внимание и на блок питания, мощную видеокарту потянет не любой блок питания.

Интерфейсы мыши


Мышь является устройством, предназначенным для ввода координат и подачи команд. Интерфейс мыши применим для любого физического воплощения устройства (мышь, трекбол). По интерфейсу с компьютером различают три основных вида мышей: Bus Mouse, Serial Mouse и PS/2-Mouse. Появились мыши с интерфейсом USB, но они пока не получили широкого распространения (как и клавиатура USB, к порту которой удобно подключить мышь USB).

С интерфейсами Serial Mouse и PS/2-Mouse иногда возникают недоразумения. Хотя оба они последовательные, но имеют существенные принципиальные различия в уровнях сигналов, способе синхронизации, частоте и формате посылок.

♦ Интерфейс PS/2 использует однополярный сигнал с уровнями ТТЛ, питание мыши — однополярное с напряжением +5 В относительно шины GND. Интерфейс RS-232C, применяемый в Serial Mouse, использует двуполярный сигнал (см. п. 2.1) с уровнями срабатывания +3 В и -3 В, и для него требуется двуполярное (относительно шины GND) питание мыши.

♦ Интерфейс PS/2 использует две раздельные сигнальные линии, одну для передачи данных, другую — для сигналов синхронизации. Serial Mouse использует асинхронный способ передачи данных всего по одной линии.

Даже не рассматривая частоты и форматы посылок, становится ясно, что прямой совместимости между этими интерфейсами быть не может. Тем не менее выпускаются и продаются переходники (пассивные!), позволяющие выбирать способ подключения мыши. Эти переходники предназначены только для универсальных мышей, у которых встроенный контроллер по напряжению питания способен распознать, к какому интерфейсу его подключили, и установить соответствующий тип своего выходного интерфейса. Универсальные мыши не особо распространены, поэтому часто приходится слышать о неудачных попытках применения таких переходников к обычной мыши Serial Mouse или PS/2-Mouse.

Дополнительную путаницу вносят мыши для компьютера Macintosh, которые имеют разъем, с виду напоминающий разъем PS/2. Однако при ближайшем рассмотрении и неудачной попытке включения его в PC становится ясно, что разъемы эти разные, да и интерфейс совершенно иной.


11. Интерфейсы принтеров и плоттеров


Современные принтеры, печатающие графические изображения (в том числе и текст в графическом режиме) с высоким разрешением, требуют высокоскоростной передачи данных по внешнему интерфейсу. Большинство принтеров имеют традиционный параллельный интерфейс Centronics или более производительный IEEE 1284, что позволяет достигать скоростей передачи 0,15-2 Мбайт/с, в зависимости от производительности компьютера и выбранного режима передачи (см. ниже). Эти же интерфейсы используются и в плоттерах.

Для подключения принтера с параллельным интерфейсом используется LPT-порт в различных модификациях, от традиционного SPP-порта до теперь уже стандартного и эффективного IEEE 1284 (см. п. 1.3).

Поначалу все принтеры с параллельным интерфейсом обязательно поддерживали протокол Centronics, а более «продвинутые» вдобавок могли работать и в режиме ECP, поддерживая согласование режимов по IEEE 1284. Их инсталляционные программы старались установить драйверы «продвинутых» режимов, если того позволяла ОС и возможности LPT-порта. Теперь ситуация изменилась, и появились принтеры с параллельным интерфейсом, не поддерживающие Centronics. При инсталляции они требуют подключения по «двунаправленному интерфейсу» IEEE 1284 (обычно режим ECP), и через LPT-порт в режиме SPP они работать отказываются. С такими принтерами в среде MS DOS без специальных драйверов работать невозможно.

В некоторых принтерах используется последовательный интерфейс RS-232C, RS-422 или «токовая петля», но здесь теоретический предел скорости около 11 Кбайт/с (115 Кбит/с), а практически она едва достигает 1 Кбайт/с (9600 бит/с). Эти принтеры можно подключать к СОМ-порту непосредственно или через адаптер — преобразователь уровня сигналов.

В последнее время стали чаще применять шину USB, однако этот переход не так уж безоблачен: шина USB поддерживается не всеми ОС. Старые приложения (ведь не всегда есть необходимость и возможность перехода на новые), работающие с принтером через функции BIOS Int 17h или непосредственно с регистрами LPT-порта, например для приглашения к подаче бланков, не могут работать с принтером USB даже в среде ОС, поддерживающих USB в полном объеме. Что касается скорости передачи данных, то у USB 1.0 со скоростью 12 Мбит/с скорость передачи данных отнюдь не достигает 1,5 Мбайт/с (12:8) хотя бы из-за накладных расходов шины. В USB 2.0, которая сейчас выходит на рынок, пиковая скорость может достигать 50 Кбайт/с (скорость в шине — 480 Мбит/с), что для принтера пока что более чем достаточно. Однако для этого и принтер, и компьютер должны поддерживать USB 2.0, и между ними не должно быть старых (USB 1.0) хабов.

Принтеры могут иметь интерфейс SCSI (редкий вариант), а также подключаться не к компьютеру, а к локальной сети по интерфейсу Ethernet (10 или 100 Мбит/с). Такое подключение удобно для принтеров коллективного пользования, и при грамотно построенной сети оно не доставляет забот пользователям. Шина Fire Wire для принтеров применяется пока очень сдержанно

ЛИТЕРАТУРА


1. Михаил Гук Аппаратные интерфейсы ПК. Энциклопедия.

2.https://coollib.com/b/187965/read#t185

КУРСОВАЯ РАБОТА

Тема: Аппаратные интерфейсы ПК

Профессия / специальность
Наладчик АО и ПО

(Шифр, наименование)

Выполнил (а)

Патраков Иван Сергеевич
Очная
1 курс 135/6 группы
«________»____________________20____г.  

(Ф.И.О., форма обучения, курс, № группы, подпись, дата)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 3

1.Интерфейсы Блока питания ПК.. 4

2. Интерфейс ATA/ATAPI (IDE) 5

3. Радиоинтерфейс Bluetooth. 7

4. Интерфейс Fibre Channel 9

5. Интерфейсы устройств хранения. 11

6. Параллельные интерфейсы SCSI 13

7. Интерфейс LPC.. 14

8. Интерфейсы Электронной памяти 15

9. Интерфейс клавиатуры.. 16

10. Интерфейсы мыши. 17

11. Интерфейсы принтеров и плоттеров. 17

ЛИТЕРАТУРА.. 23

ВВЕДЕНИЕ


Толковый словарь по вычислительным системам определяет понятие интерфейс (interface) как границу раздела двух систем, устройств или программ; элементы соединения и вспомогательные схемы управления, используемые для соединения устройств. Рассмотрим вкратце основные свойства интерфейсов.

По способу передачи информации интерфейсы подразделяются на параллельные и последовательные. В параллельном интерфейсе все биты передаваемого слова (обычно байта) выставляются и передаются по соответствующим параллельно идущим проводам одновременно. В PC традиционно используется параллельный интерфейс Centronics, реализуемый LPT-портами, шины ATA, SCSI и все шины расширения. В последовательном интерфейсе биты передаются друг за другом, обычно по одной (возможно, и двухпроводной) линии. Эта линия может быть как однонаправленной (например, в RS-232C, реализуемой СОМ-портом, шине Fire Wire, SPI, JTAG) так и двунаправленной (USB, I²C).

При рассмотрении интерфейсов важным параметром является пропускная способность.

Важным свойством интерфейса, на которое часто не обращают внимание, является гальваническая развязка, а точнее — ее отсутствие «Схемные земли» устройств, соединяемых интерфейсом с СОМ- или LPT-портом PC, оказываются связанными со схемной землей компьютера (а через интерфейсный кабель и между собой). Если между ними до подключения интерфейса была разность потенциалов, то по общему проводу интерфейса потечет уравнивающий ток.

Интерфейсы блока питания PC


Блок питания PC обеспечивает напряжениями постоянного тока системный блок со всеми его сложными и часто «привередливыми» устройствами. С самых первых моделей PC здесь применяется двухтактная схема преобразователя с бестрансформаторным входом; без революционных изменений эта схема дошла и до наших дней. Преобразователь является регулирующим элементом стабилизатора напряжения основного источника +5 В. Остальные напряжения могут быть стабилизированы дополнительными выходными стабилизаторами, но чаще их оставляют нестабилизированными. При этом чем больше нагрузка блока по основной (стабилизированной) цепи, тем выше напряжения на остальных шинах.

Блоки питания PC не критичны к частоте сети (50 или 60 Гц) и могут работать даже от сети постоянного тока

Блок питания PC обычно имеет стандартный конструктив и набор жгутов с разъемами питания системной платы и периферийных устройств.

♦ СОМ — черный (соответствует цепи GND традиционных блоков);

♦ +5V — красный;

♦ +12V — желтый;

♦ -5V — белый;

♦ -12V — синий;

♦ +3.3V — оранжевый;

♦ +3.3V Sense — коричневый (может подходить к контакту 11);

♦ +5VSB — Фиолетовый;

♦ PS-ON — зеленый;

♦ PW-ON — серый.

Дополнительный разъем:

♦ +3.3V Sense — белый с коричневыми полосками;

♦ FanC — белый с синими полосками;

♦ FanM — белый;

♦ 1394V — белый с красными полосками;

♦ 1394R — белый с черными полосками.

Интерфейс ATA/ATAPI (IDE)


Интерфейс ATA (AT Attachment for Disk Drives) разрабатывался в 1986–1990 гг. для подключения накопителей на жестких магнитных дисках к компьютерам IBM PC AT с шиной ISA. Стандарт, выработанный комитетом X3T10, определяет набор регистров устройств и назначение сигналов 40-контактного интерфейсного разъема. Интерфейс появился в результате переноса стандартного (для PC/AT) контроллера жесткого диска ближе к накопителю, то есть создания устройств со встроенным контроллером — IDE (Integrated Drive Electronics). Стандартный контроллер AT позволял подключать до двух накопителей, что в интерфейсе ATA означает параллельное подключение контроллеров двух устройств. В спецификации ATA фигурируют следующие компоненты.

♦ Хост-адаптер — средства сопряжения интерфейса ATA с шиной компьютера. Хостом мы будем называть компьютер с хост-адаптером интерфейса ATA. Хост-контроллер — более развитый вариант хост-адаптера.

♦ Ведущее устройство (Master) — ПУ, в спецификации ATA официально называемое Device-0 (устройство 0).

♦ Ведомое устройство (Slave) — ПУ, в спецификации официально называемое Device-1 (устройство 1).

Хост-адаптер и устройства объединяются кабелем-шлейфом, соединяющим параллельно одноименные контакты интерфейсных разъемов. Регистры обоих контроллеров оказываются расположенными в одних и тех же областях пространства ввода-вывода. Для выбора устройства, исполняющего текущую команду, используется бит выбора накопителя (DEV) в регистре номера устройства и головки (drive/head register). Если бит DEV=0, выбрано ведущее устройство, если DEV=1 — ведомое. Запись в этот регистр воспринимается сразу обоими устройствами, на обращения к остальным регистрам реагирует только выбранное. Достаточно универсальный набор сигналов позволяет подключать любое устройство со встроенным контроллером, которому в пространстве портов ввода-вывода достаточно того же набора регистров, способное поддержать режим выбора устройства через вышеупомянутый бит. Принятая система команд и регистров, являющаяся частью спецификации ATA, ориентирована на блочный обмен данными с устройствами прямого доступа. Для иных устройств существует спецификация ATAPI, основанная на тех же аппаратных средствах, но позволяющая обмениваться пакетами управляющей информации (Package Interface, PI). Структура и наполнение пакетов позаимствованы из универсального интерфейса SCSI. Пакетный интерфейс позволяет расширить границы применения шины ATA.

Адресация в ATA имеет «дисковые корни»: для накопителей изначально указывали адрес цилиндра (cylinder), головки (head) и сектора (sector) — так называемая трехмерная адресация CHS. Сначала эта адресация точно соответствовала реальной геометрии — физически сектор действительно находился по указанному адресу. Позже по ряду причин диски ATA стали описывать внешней геометрией, отличающейся от реальной внутренней (например, разные зоны треков имеют разное число секторов, причем часть секторов может резервироваться на случай замены дефектных). При этом одно и то же устройство может иметь различную внешнюю геометрию. Преобразование адресов в реальные выполняется встроенным контроллером устройства. В системе CHS устройство ATA позволяет адресовать до 267 386 880 (65 536×16×255) секторов (блоков), что при размере сектора в 512 байт дает 136 902 082 560 байт (около 137 Гбайт). Позже пришли к линейной адресации логических блоков LBA (Logical Block Addressing), где адрес блока (сектора) определяется 28-битным числом, что позволяет адресовать до 268 435 455 (228) блоков (немного больше, чем в CHS). Для устройств ATА, поддерживающих и CHS, и LBA, режим адресации определяется для каждой команды битом L (бит 6) регистра D/H; режимы могут чередоваться произвольным образом. Устройства ATAPI используют принятую в SCSI 32-битную логическую адресацию, позволяющую адресовать до 2 Тбайт (при 512-байтном блоке).

Если к шине ATA подключено одно устройство, оно должно быть вед

Наши рекомендации