Основные свойства двойного интеграла
Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного
интеграла.
1°. Аддитивность. Если функция f(x, y) интегрируема в области D и если область D при помощи
кривой Гплощади нуль разбивается на две связные и не имеющие общих внутренних точек области D1 и D2, то
функция f(x, y) интегрируема в каждой из областей D1 и D2, причем
2°. Линейное свойство. Если функции f(x, y) и g(x, y) интегрируемы в области D, а α и β - любые вещественные
числа, то функция [α ・ f(x, y) + β ・ g(x, y)] также интегрируема в области D, причем
3°. Если функции f(x, y) и g(x, y) интегрируемы в области D, то и произведение этих функций интегрируемо в D.
4°. Если функции f(x, y) и g(x, y) обе интегрируемы в области D и всюду в этой области f(x, y) ≤ g(x, y), то
5°. Если функция f(x, y) интегрируема в области D, то и функция |f(x, y)| интегрируема в области D, причем
(Конечно, из интегрируемости |f(x, y)| в D не вытекает интегрируемость f(x, y) в D.
Вычисление двойного интеграла в декартовых координатах.
Пусть функция 2-х переменных z = f (x, y) задана и непрерывна в замкнутой области xOy. Двойной интеграл от этой функции по области D имеет вид: , где .
Область xOy называется правильной в направлении оси Oy, если всякая прямая, параллельная оси Oy пересекает границу области не более, чем в двух точках (за исключением участков границы, параллельных Oy).
Если область D – правильная в направлении оси Oy (рис. 2), то ее можно задать системой неравенств:
В этом случае двойной интеграл от функции z = f (x, y) по области D можно вычислить при помощи двукратного (повторного) интеграла:
.
Здесь внутренний интеграл вычисляется по переменной y в предположении, что x – постоянная (x = const); результатом вычисления внутреннего интеграла является некоторая функция Ф (x). Затем вычисляется внешний интеграл от Ф (x) по переменной x в постоянных пределах, в результате получается число
Приложения двойного интеграла
|
Дифференциальные уравнения. Основные понятия.
Дифференциальное уравнение — уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или все, кроме хотя бы одной производной, отсутствовать вовсе. Дифференциальное уравнение порядка выше первого можно преобразовать в систему уравнений первого порядка, в которой число уравнений равно порядку исходного уравнения. Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы.