Указатели и аргументы функций
УКАЗАТЕЛИ И АДРЕСА
Указатель — это переменная, содержащая адрес переменной. Память типичной машины подставляет собой массив последовательно пронумерованных или проадресованных ячеек, с которыми можно работать по отдельности или связными кусками. Применительно к любой машине верны следующие утверждения: один байт может хранить значение типа char, двухбайтовые ячейки могут рассматриваться как целое типа short, а четырехбайтовые - как целые типа long. Указатель - это группа ячеек (как правило, две или четыре), в которых может храниться адрес. Так, если c имеет тип char, а p - указатель на c, то ситуация выглядит следующим образом:
Унарный оператор & выдает адрес объекта, так что инструкция
p = &c;присваивает переменной p адрес ячейки c (говорят, что p указывает на c). Оператор & применяется только к объектам, расположенным в памяти: к переменным и элементам массивов. Его операндом не может быть ни выражение, ни константа, ни регистровая переменная.
Унарный оператор * есть оператор косвенного доступа. Примененный к указателю он выдает объект, на который данный указатель указывает. Предположим, что x и y имеют тип int, а ip – укаэатель на int. Следующие несколько строк придуманы специально для того, чтобы показать, каким образом объявляются указатели и как используются операторы & и *.
int х = 1, у = 2, z[10];int *ip; /* ip - указатель на int */ ip = &x; /* теперь ip указывает на x */y = *ip; /* y теперь равен 1 */*ip = 0; /* x теперь равен 0 */ip = &z[0]; /* ip теперь указывает на z[0] */Объявления x, y и z нам уже знакомы. Объявление указателя ip
int *ip;мы стремились сделать мнемоничным - оно гласит: "выражение *ip имеет тип int". Синтаксис объявления переменной "подстраивается" под синтаксис выражений, в которых эта переменная может встретиться. Указанный принцип применим и в объявлениях функций. Например, запись
double *dp, atof (char *);означает, что выражения *dp и atof(s) имеют тип double, а аргумент функции atof есть указатель на char.
Вы, наверное, заметили, что указателю разрешено указывать только на объекты определенного типа. (Существует одно исключение: "указатель на void" может указывать на объекты любого типа, но к такому указателю нельзя применять оператор косвенного доступа.
Если ip указывает на x целочисленного типа, то *ip можно использовать в любом месте, где допустимо применение x; например,
*ip = *ip + 10;увеличивает *ip на 10.
Унарные операторы * и & имеют более высокий приоритет, чем арифметические операторы, так что присваивание
y = *ip + 1;берет то, на что указывает ip, и добавляет к нему 1, а результат присваивает переменной y. Аналогично
*ip += 1;
увеличивает на единицу то, на что указывает ip; те же действия выполняют
++*ip;и
(*iр)++;В последней записи скобки необходимы, поскольку если их не будет, увеличится значение самого указателя, а не то, на что он указывает. Это обусловлено тем, что унарные операторы * и ++ имеют одинаковый приоритет и порядок выполнения - справа налево.
И наконец, так как указатели сами являются переменными, в тексте они могут встречаться и без оператора косвенного доступа. Например, если iq есть другой указатель на int, то
iq = ip;копирует содержимое ip в iq, чтобы ip и iq указывали на один и тот же объект.
УКАЗАТЕЛИ И МАССИВЫ
В Си существует связь между указателями и массивами, и связь эта настолько тесная, что эти средства лучше рассматривать вместе. Любой доступ к элементу массива, осуществляемый операцией индексирования, может быть выполнен с помощью указателя. Вариант с указателями в общем случае работает быстрее, но разобраться в нем, особенно непосвященному, довольно трудно.
Объявление
int a[10];Определяет массив a размера 10, т. е. блок из 10 последовательных объектов с именами a[0], a[1], ..., a[9].
Запись a[i] отсылает нас к i-му элементу массива. Если pa есть указатель на int, т. е. объявлен как
int *pa;то в результате присваивания
pa = &a[0];pa будет указывать на нулевой элемент a, иначе говоря, pa будет содержать адрес элемента a[0].
Теперь присваивание
x = *pa;будет копировать содержимое a[0] в x.
Если pa указывает на некоторый элемент массива, то pa+1 по определению указывает на следующий элемент, pa+i - на i-й элемент после pa, a pa-i - на i-й элемент перед pa. Таким образом, если pa указывает на a[0], то
*(pa+1)есть содержимое a[1], a+i - адрес a[i], a *(pa+i) - содержимое a[i].
Сделанные замечания верны безотносительно к типу и размеру элементов массива a. Смысл слов "добавить 1 к указателю", как и смысл любой арифметики с указателями, состоит в том, чтобы pa+1 указывал на следующий объект, a pa+i - на i-й после pa.
Между индексированием и арифметикой с указателями существует очень тесная связь. По определению значение переменной или выражения типа массив есть адрес нулевого элемента массива. После присваивания
pa = &a[0];ра и a имеют одно и то же значение. Поскольку имя массива является синонимом расположения его начального элемента, присваивание pa=&a[0] можно также записать в следующем виде:
pa = a;С другой стороны, если pa - указатель, то его можно использовать с индексом, т. е. запись pa[i] эквивалентна записи *(pa+i). Короче говоря, элемент массива можно изображать как в виде указателя со смещением, так и в виде имени массива с индексом.
Между именем массива и указателем, выступающим в роли имени массива, существует одно различие. Указатель - это переменная, поэтому можно написать pa=a или pa++. Но имя массива не является переменной, и записи вроде a=pa или a++ не допускаются.
Если имя массива передается функции, то последняя получает в качестве аргумента адрес его начального элемента. Внутри вызываемой функции этот аргумент является локальной переменной, содержащей адрес. Мы можем воспользоваться отмеченным фактом и написать еще одну версию функции strlen, вычисляющей длину строки.
/* strlen: возвращает длину строки */int strlen(char *s){ int n; for (n = 0; *s != '\0'; s++) n++; return n;}Так как переменная s - указатель, к ней применима операция ++; s++ не оказывает никакого влияния на строку символов функции, которая обратилась к strlen. Просто увеличивается на 1 некоторая копия указателя, находящаяся в личном пользовании функции strlen. Это значит, что все вызовы, такие как:
strlen("3дравствуй, мир"); /* строковая константа */strlen(array); /* char array[100]; */strlen(ptr); /* char *ptr; */правомерны.
Формальные параметры
char s[];и
char *s;в определении функции эквивалентны. Мы отдаем предпочтение последнему варианту, поскольку он более явно сообщает, что s есть указатель. Если функции в качестве аргумента передается имя массива, то она может рассматривать его так, как ей удобно - либо как имя массива, либо как указатель, и поступать с ним соответственно. Она может даже использовать оба вида записи, если это покажется уместным и понятным.
Функции можно передать часть массива, для этого аргумент должен указывать на начало подмассива. Например, если a - массив, то в записях
f(&a[2])функции f передается адрес подмассива, начинающегося с элемента a[2]. Внутри функции f описание параметров может выглядеть как
АДРЕСНАЯ АРИФМЕТИКА
Если p есть указатель на некоторый элемент массива, то p++ увеличивает p так, чтобы он указывал на следующий элемент, а p+=i увеличивает его, чтобы он указывал на i-й элемент после того, на который указывал ранее. Эти и подобные конструкции - самые простые примеры арифметики над указателями, называемой также адресной арифметикой.
Си последователен и единообразен в своем подходе к адресной арифметике. Это соединение в одном языке указателей, массивов и адресной арифметики - одна из сильных его сторон.
Как вы уже, наверное, заметили, указатели и целые можно складывать и вычитать. Конструкция
p + nозначает адрес объекта, занимающего n-е место после объекта, на который указывает p. Это справедливо безотносительно к типу объекта, на который указывает p; n автоматически домножается на коэффициент, соответствующий размеру объекта. Информация о размере неявно присутствует в объявлении p. Если, к примеру, int занимает четыре байта, то коэффициент умножения будет равен четырем.
Допускается также вычитание указателей. Например, если p и q указывают на элементы одного массива и p<q, то q-p+1 есть число элементов от p до q включительно. Этим фактом можно воспользоваться при написании еще одной версии strlen:
/* strlen: возвращает длину строки s */int strlen(char *s){ char *p = s; while (*p != '\0') p++; return p - s;}В своем объявлении p инициализируется значением s, т. е. вначале p указывает на первый символ строки. На каждом шаге цикла while проверяется очередной символ; цикл продолжается до тех пор, пока не встретится '\0'. Каждое продвижение указателя p на следующий символ выполняется инструкцией p++, и разность p-s дает число пройденных символов, т. е. длину строки.
Арифметика с указателями учитывает тип: если она имеет дело со значениями float, занимающими больше памяти, чем char, и p - указатель на float, то p++ продвинет p на следующее значение float. Это значит, что другую версию alloc, которая имеет дело с элементами типа float, а не char, можно получить простой заменой в alloc и afree всех char на float. Все операции с указателями будут автоматически откорректированы в соответствии с размером объектов, на которые указывают указатели.
Можно производить следующие операции с указателями: присваивание значения указателя другому указателю того же типа, сложение и вычитание указателя и целого, вычитание и сравнение двух указателей, указывающих на элементы одного и того же массива, а также присваивание указателю нуля и сравнение указателя с нулем. Других операций с указателями производить не допускается. Нельзя складывать два указателя, перемножать их, делить, сдвигать, выделять разряды; указатель нельзя складывать со значением типа float или double; указателю одного типа нельзя даже присвоить указатель другого типа, не выполнив предварительно операции приведения (исключение составляют лишь указатели типа void*).
МНОГОМЕРНЫЕ МАССИВЫ
В Си имеется возможность задавать прямоугольные многомерные массивы, правда, на практике по сравнению с массивами указателей они используются значительно реже. В этом параграфе мы продемонстрируем некоторые их свойства.
Рассмотрим задачу перевода даты "день-месяц" в "день года" и обратно. Например, 1 марта - это 60-й день невисокосного или 61-й день високосного года. Определим две функции для этих преобразований: функция day_of_year будет преобразовывать месяц и день в день года, a month_day - день года в месяц и день. Поскольку последняя функция вычисляет два значения, аргументы месяц и день будут указателями. Так вызов
month_day(1988, 60, &m, &d)присваивает переменной m значение 2, а d - 29 (29 февраля).
Нашим функциям нужна одна и та же информация, а именно таблица, содержащая числа дней каждого месяца. Так как для високосного и невисокосного годов эти таблицы будут различаться, проще иметь две отдельные строки в двумерном массиве, чем во время вычислений отслеживать особый случай с февралем. Массив и функции, выполняющие преобразования, имеют следующий вид:
static char daytab[2][13] = { {0, 31, 28, 31. 30, 31, 30, 31, 31, 30, 31, 30, 31}, {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}} /* day_of_year: определяет день года по месяцу и дню */int day_of_year(int year, int month, int day){ int i, leap; leap = year % 4 == 0 && year % 100 !=0 || year % 400 == 0; for (i = 1; i < month; i++) day += daytab[leap][i]; return day;} /* month_day: определяет месяц и день по дню года *•/void month_day(int year, int yearday, int *pmonth, int *pday){ int i, leap; leap = year % 4 == 0 && year % 100 != 0 || year % 400 == 0; for (i = 1; yearday > daytab[leap][i]; i++) yearday -= daytab[leap][i]; *pmonth = i; *pday = yearday;)Напоминаем, что арифметическое значение логического выражения (например выражения, с помощью которого вычислялось leap) равно либо нулю (ложь), либо единице (истина), так что мы можем использовать его как индекс в массиве daytab.
Массив daytab должен быть внешним по отношению к обеим функциям day_of_year и month_day, так как он нужен и той и другой. Мы сделали его типа char, чтобы проиллюстрировать законность применения типа char для малых целых без знака.
Массив daytab - это первый массив из числа двумерных, с которыми мы еще не имели дела. Строго говоря, в Си двумерный массив рассматривается как одномерный массив, каждый элемент которого - также массив. Поэтому индексирование изображается так:
daytab[i][j] /* [строка] [столбец] */а не так:
daytab[i,j] /* НЕВЕРНО */Особенность двумерного массива в Си заключается лишь в форме записи, в остальном его можно трактовать почти так же, как в других языках. Элементы запоминаются строками, следовательно, при переборе их в том порядке, как они расположены в памяти, чаще будет изменяться самый правый индекс.
Массив инициализируется списком начальных значений, заключенным в фигурные скобки; каждая строка двумерного массива инициализируется соответствующим подсписком. Нулевой столбец добавлен в начало daytab лишь для того, чтобы индексы, которыми мы будем пользоваться, совпадали с естественными номерами месяцев от 1 до 12. Экономить пару ячеек памяти здесь нет никакого смысла, а программа, в которой уже не надо корректировать индекс, выглядит более ясной.
Если двумерный массив передается функции в качестве аргумента, то объявление соответствующего ему параметра должно содержать количество столбцов; количество строк в данном случае несущественно, поскольку, как и прежде, функции будет передан указатель на массив строк, каждая из которых есть массив из 13 значений типа int. B нашем частном случае мы имеем указатель на объекты, являющиеся массивами из 13 значений типа int. Таким образом, если массив daytab передается некоторой функции f, то эту функцию можно было бы определить следующим образом:
f(int daytab[2][13]) {...}Вместо этого можно записать
f(int daytab[][13]) {...}поскольку число строк здесь не имеет значения, или
f(int (*daytab)[13]) {...}Последняя запись объявляет, что параметр есть указатель на массив из 13 значений типа int. Скобки здесь необходимы, так как квадратные скобки [] имеют более высокий приоритет, чем *. Без скобок объявление
int *daytab[13]определяет массив из 13 указателей на char. В более общем случае только первое измерение (соответствующее первому индексу) можно не задавать, все другие специфицировать необходимо. В параграфе 5.12 мы продолжим рассмотрение сложных объявлений.
АРГУМЕНТЫ КОМАНДНОЙ СТРОКИ
В операционной среде, обеспечивающей поддержку Си, имеется возможность передать аргументы или параметры запускаемой программе с помощью командной строки. В момент вызова main получает два аргумента. В первом, обычно называемом argc (сокращение от argument count), стоит количество аргументов, задаваемых в командной строке. Второй, argv (от argument vector), является указателем на массив символьных строк, содержащих сами аргументы. Для работы с этими строками обычно используются указатели нескольких уровней.
Аргумент командной строки — это информация, которая вводится в командной строке операционной системы вслед за именем программы. Например, чтобы запустить компиляцию программы, необходимо в командной строке после подсказки набрать примерно следующее:
cc имя_программы
имя_программы представляет собой аргумент командной строки, он указывает имя той программы, которую вы собираетесь компилировать.
Чтобы принять аргументы командной строки, используются два специальных встроенных аргумента:argc и argv. Параметр argc содержит количество аргументов в командной строке и является целым числом, причем он всегда не меньше 1, потому что первым аргументом считается имя программы. А параметр argv является указателем на массив указателей на строки. В этом массиве каждый элемент указывает на какой-либо аргумент командной строки. Все аргументы командной строки являются строковыми, поэтому преобразование каких бы то ни было чисел в нужный двоичный формат должно быть предусмотрено в программе при ее разработке.
Вот простой пример использования аргумента командной строки. На экран выводятся слово Привети ваше имя, которое надо указать в виде аргумента командной строки.
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
if(argc!=2) {
printf("Вы забыли ввести свое имя.\n");
exit(1);
}
printf("Привет %s", argv[1]);
return 0;
}
Если вы назвали эту программу name (имя) и ваше имя Том, то для запуска программы следует в командную строку ввести name Том. В результате выполнения программы на экране появится сообщениеПривет, Том.
Во многих средах все аргументы командной строки необходимо отделять друг от друга пробелом или табуляцией. Запятые, точки с запятой и тому подобные символы разделителями не считаются. Например,
run Spot, run
состоит из трех символьных строк, в то время как
Эрик, Рик, Фред
представляет собой одну символьную строку — запятые, как правило, разделителями не считаются.
Если в строке имеются пробелы, то, чтобы из нее не получилось несколько аргументов, в некоторых средах эту строку можно заключать в двойные кавычки. В результате вся строка будет считаться одним аргументом. Чтобы подробнее узнать, как в вашей операционной системе задаются параметры командной строки, изучите документацию этой системы.
Очень важно правильно объявлять argv. Вот как это делают чаще всего:
char *argv[];
Пустые квадратные скобки указывают на то, что у массива неопределенная длина. Теперь получить доступ к отдельным аргументам можно с помощью индексации массива argv. Например, argv[0]указывает на первую символьную строку, которой всегда является имя программы; argv[1] указывает на первый аргумент и так далее.
УКАЗАТЕЛИ НА ФУНКЦИИ
В Си сама функция не является переменной, но можно определить указатель на функцию и работать с ним, как с обычной переменной: присваивать, размещать в массиве, передавать в качестве параметра функции, возвращать как результат из функции и т.д. Для иллюстрации этих возможностей воспользуемся программой сортировки, которая уже встречалась в настоящей главе. Изменим ее так, чтобы при задании необязательного аргумента -n вводимые строки упорядочивались по их числовому значению, а не в лексикографическом порядке
В обращениях к функциям qsort, strcmp и numcmp их имена трактуются как адреса этих функций, поэтому оператор & перед ними не нужен, как он не был нужен и перед именем массива.
Функция swap, меняющая местами два указателя, идентична той, что мы привели ранее в этой главе за исключением того, что объявления указателей заменены на void*.
void swap(void *v[], int i, int j){ void *temp; temp = v[i]; v[i] = v[j]; v[j] = temp;}Программу сортировки можно дополнить и множеством других возможностей; реализовать некоторые из них предлагается в качестве упражнений.
double func1(double x, double grade)
{
double result = 3 * pow(x, grade) + 1;
return result;
}
double func2(double x)
{
double result = sin(x) + cos(x);
return result;
}
double func3(double x)
{
double result = exp(x);
return result;
}
int main()
{
double f;
int type;
double(*ptrFunc1)(double x, double grade) = &func1;
double(*ptrFunc2)(double x) = &func2;
double(*ptrFunc3)(double x) = &func3;
switch (type)
{
case 1:
f = ptrFunc1(x, grade);
break;
case 2:
f = ptrFunc2(x);
break;
case 3:
f = ptrFunc3(x);
break;
default:
break;
}
return 0;
}
СЛОЖНЫЕ ОБЪЯВЛЕНИЯ
Иногда Си ругают за синтаксис объявлений, особенно тех, которые содержат в себе указатели на функции. Таким синтаксис получился в результате нашей попытки сделать похожими объявления объектов и их использование. В простых случаях этот синтаксис хорош, однако в сложных ситуациях он вызывает затруднения, поскольку объявления перенасыщены скобками и их невозможно читать слева направо. Проблему иллюстрирует различие следующих двух объявлений:
int *f(); /* f: функция, возвращающая ук-ль на int */int (*pf)(); /* pf: ук-ль на ф-цию, возвращающую int */Приоритет префиксного оператора * ниже, чем приоритет (), поэтому во втором случае скобки необходимы.
Хотя на практике по-настоящему сложные объявления встречаются редко, все же важно знать, как их понимать, а если потребуется, и как их конструировать. Укажем хороший способ: объявления можно синтезировать, двигаясь небольшими шагами с помощью typedef, этот способ рассмотрен в параграфе 6.7. В настоящем параграфе на примере двух программ, осуществляющих преобразования правильных Си-объявлений в соответствующие им словесные описания и обратно, мы демонстрируем иной способ конструирования объявлений. Словесное описание читается слева направо.
char **argv argv: указ. на указ. на charint (*daytab)[13] daytab: указ. на массив[13] из intint (*daytab)[13] daytab: массив[13] из указ. на intvoid *comp() comp: функц. возвр. указ. на voidvoid (*comp)() comp: указ. на функц. возвр. voidchar (*(*x())[])() x: функц. возвр. указ. на массив[] из указ. на функц. возвр. charchar(*(*x[3])())[5] x: массив[3] из указ. на функц. возвр. указ. на массив[5] из charУКАЗАТЕЛИ И АДРЕСА
Указатель — это переменная, содержащая адрес переменной. Память типичной машины подставляет собой массив последовательно пронумерованных или проадресованных ячеек, с которыми можно работать по отдельности или связными кусками. Применительно к любой машине верны следующие утверждения: один байт может хранить значение типа char, двухбайтовые ячейки могут рассматриваться как целое типа short, а четырехбайтовые - как целые типа long. Указатель - это группа ячеек (как правило, две или четыре), в которых может храниться адрес. Так, если c имеет тип char, а p - указатель на c, то ситуация выглядит следующим образом:
Унарный оператор & выдает адрес объекта, так что инструкция
p = &c;присваивает переменной p адрес ячейки c (говорят, что p указывает на c). Оператор & применяется только к объектам, расположенным в памяти: к переменным и элементам массивов. Его операндом не может быть ни выражение, ни константа, ни регистровая переменная.
Унарный оператор * есть оператор косвенного доступа. Примененный к указателю он выдает объект, на который данный указатель указывает. Предположим, что x и y имеют тип int, а ip – укаэатель на int. Следующие несколько строк придуманы специально для того, чтобы показать, каким образом объявляются указатели и как используются операторы & и *.
int х = 1, у = 2, z[10];int *ip; /* ip - указатель на int */ ip = &x; /* теперь ip указывает на x */y = *ip; /* y теперь равен 1 */*ip = 0; /* x теперь равен 0 */ip = &z[0]; /* ip теперь указывает на z[0] */Объявления x, y и z нам уже знакомы. Объявление указателя ip
int *ip;мы стремились сделать мнемоничным - оно гласит: "выражение *ip имеет тип int". Синтаксис объявления переменной "подстраивается" под синтаксис выражений, в которых эта переменная может встретиться. Указанный принцип применим и в объявлениях функций. Например, запись
double *dp, atof (char *);означает, что выражения *dp и atof(s) имеют тип double, а аргумент функции atof есть указатель на char.
Вы, наверное, заметили, что указателю разрешено указывать только на объекты определенного типа. (Существует одно исключение: "указатель на void" может указывать на объекты любого типа, но к такому указателю нельзя применять оператор косвенного доступа.
Если ip указывает на x целочисленного типа, то *ip можно использовать в любом месте, где допустимо применение x; например,
*ip = *ip + 10;увеличивает *ip на 10.
Унарные операторы * и & имеют более высокий приоритет, чем арифметические операторы, так что присваивание
y = *ip + 1;берет то, на что указывает ip, и добавляет к нему 1, а результат присваивает переменной y. Аналогично
*ip += 1;увеличивает на единицу то, на что указывает ip; те же действия выполняют
++*ip;и
(*iр)++;В последней записи скобки необходимы, поскольку если их не будет, увеличится значение самого указателя, а не то, на что он указывает. Это обусловлено тем, что унарные операторы * и ++ имеют одинаковый приоритет и порядок выполнения - справа налево.
И наконец, так как указатели сами являются переменными, в тексте они могут встречаться и без оператора косвенного доступа. Например, если iq есть другой указатель на int, то
iq = ip;копирует содержимое ip в iq, чтобы ip и iq указывали на один и тот же объект.
УКАЗАТЕЛИ И АРГУМЕНТЫ ФУНКЦИЙ
Поскольку в Си функции в качестве своих аргументов получают значения параметров, нет прямой возможности, находясь в вызванной функции, изменить переменную вызывающей функции. В программе сортировки нам понадобилась функция swap, меняющая местами два неупорядоченных элемента. Однако недостаточно написать
swap(a, b);где функция swap определена следующим образом:
void swap(int х, int у) /* НЕВЕРНО */{ int temp; temp = х; x = y; у = temp;}Поскольку swap получает лишь копии переменных a и b, она не может повлиять на переменные a и b той программы, которая к ней обратилась. Чтобы получить желаемый эффект, вызывающей программе надо передать указатели на те значения, которые должны быть изменены:
swap(&a, &b);Так как оператор & получает адрес переменной, &a есть указатель на a. В самой же функции swap параметры должны быть объявлены как указатели, при этом доступ к значениям параметров будет осуществляться косвенно.
void swap(int *px, int *py) /* перестановка *px и *py */{ int temp; temp = *рх; *рх = *py; *ру = temp;}Графически это выглядит следующим образом: в вызывающей программе:
Аргументы-указатели позволяют функции осуществлять доступ к объектам вызвавшей ее программы и дают возможность изменить эти объекты.
УКАЗАТЕЛИ И МАССИВЫ
В Си существует связь между указателями и массивами, и связь эта настолько тесная, что эти средства лучше рассматривать вместе. Любой доступ к элементу массива, осуществляемый операцией индексирования, может быть выполнен с помощью указателя. Вариант с указателями в общем случае работает быстрее, но разобраться в нем, особенно непосвященному, довольно трудно.
Объявление
int a[10];Определяет массив a размера 10, т. е. блок из 10 последовательных объектов с именами a[0], a[1], ..., a[9].
Запись a[i] отсылает нас к i-му элементу массива. Если pa есть указатель на int, т. е. объявлен как
int *pa;то в результате присваивания
pa = &a[0];pa будет указывать на нулевой элемент a, иначе говоря, pa будет содержать адрес элемента a[0].
Теперь присваивание
x = *pa;будет копировать содержимое a[0] в x.
Если pa указывает на некоторый элемент массива, то pa+1 по определению указывает на следующий элемент, pa+i - на i-й элемент после pa, a pa-i - на i-й элемент перед pa. Таким образом, если pa указывает на a[0], то
*(pa+1)есть содержимое a[1], a+i - адрес a[i], a *(pa+i) - содержимое a[i].
Сделанные замечания верны безотносительно к типу и размеру элементов массива a. Смысл слов "добавить 1 к указателю", как и смысл любой арифметики с указателями, состоит в том, чтобы pa+1 указывал на следующий объект, a pa+i - на i-й после pa.
Между индексированием и арифметикой с указателями существует очень тесная связь. По определению значение переменной или выражения типа массив есть адрес нулевого элемента массива. После присваивания
pa = &a[0];ра и a имеют одно и то же значение. Поскольку имя массива является синонимом расположения его начального элемента, присваивание pa=&a[0] можно также записать в следующем виде:
pa = a;С другой стороны, если pa - указатель, то его можно использовать с индексом, т. е. запись pa[i] эквивалентна записи *(pa+i). Короче говоря, элемент массива можно изображать как в виде указателя со смещением, так и в виде имени массива с индексом.
Между именем массива и указателем, выступающим в роли имени массива, существует одно различие. Указатель - это переменная, поэтому можно написать pa=a или pa++. Но имя массива не является переменной, и записи вроде a=pa или a++ не допускаются.
Если имя массива передается функции, то последняя получает в качестве аргумента адрес его начального элемента. Внутри вызываемой функции этот аргумент является локальной переменной, содержащей адрес. Мы можем воспользоваться отмеченным фактом и написать еще одну версию функции strlen, вычисляющей длину строки.
/* strlen: возвращает длину строки */int strlen(char *s){ int n; for (n = 0; *s != '\0'; s++) n++; return n;}Так как переменная s - указатель, к ней применима операция ++; s++ не оказывает никакого влияния на строку символов функции, которая обратилась к strlen. Просто увеличивается на 1 некоторая копия указателя, находящаяся в личном пользовании функции strlen. Это значит, что все вызовы, такие как:
strlen("3дравствуй, мир"); /* строковая константа */strlen(array); /* char array[100]; */strlen(ptr); /* char *ptr; */правомерны.
Формальные параметры
char s[];и
char *s;в определении функции эквивалентны. Мы отдаем предпочтение последнему варианту, поскольку он более явно сообщает, что s есть указатель. Если функции в качестве аргумента передается имя массива, то она может рассматривать его так, как ей удобно - либо как имя массива, либо как указатель, и поступать с ним соответственно. Она может даже использовать оба вида записи, если это покажется уместным и понятным.
Функции можно передать часть массива, для этого аргумент должен указывать на начало подмассива. Например, если a - массив, то в записях
f(&a[2])функции f передается адрес подмассива, начинающегося с элемента a[2]. Внутри функции f описание параметров может выглядеть как
АДРЕСНАЯ АРИФМЕТИКА
Если p есть указатель на некоторый элемент массива, то p++ увеличивает p так, чтобы он указывал на следующий элемент, а p+=i увеличивает его, чтобы он указывал на i-й элемент после того, на который указывал ранее. Эти и подобные конструкции - самые простые примеры арифметики над указателями, называемой также адресной арифметикой.
Си последователен и единообразен в своем подходе к адресной арифметике. Это соединение в одном языке указателей, массивов и адресной арифметики - одна из сильных его сторон.
Как вы уже, наверное, заметили, указатели и целые можно складывать и вычитать. Конструкция
p + nозначает адрес объекта, занимающего n-е место после объекта, на который указывает p. Это справедливо безотносительно к типу объекта, на который указывает p; n автоматически домножается на коэффициент, соответствующий размеру объекта. Информация о размере неявно присутствует в объявлении p. Если, к примеру, int занимает четыре байта, то коэффициент умножения будет равен четырем.
Допускается также вычитание указателей. Например, если p и q указывают на элементы одного массива и p<q, то q-p+1 есть число элементов от p до q включительно. Этим фактом можно воспользоваться при написании еще одной версии strlen:
/* strlen: возвращает длину строки s */int strlen(char *s){ char *p = s; while (*p != '\0') p++; return p - s;}В своем объявлении p инициализируется значением s, т. е. вначале p указывает на первый символ строки. На каждом шаге цикла while проверяется очередной символ; цикл продолжается до тех пор, пока не встретится '\0'. Каждое продвижение указателя p на следующий символ выполняется инструкцией p++, и разность p-s дает число пройденных символов, т. е. длину строки.
Арифметика с указателями учитывает тип: если она имеет дело со значениями float, занимающими больше памяти, чем char, и p - указатель на float, то p++ продвинет p на следующее значение float. Это значит, что другую версию alloc, которая имеет дело с элементами типа float, а не char, можно получить простой заменой в alloc и afree всех char на float. Все операции с указателями будут автоматически откорректированы в соответствии с размером объектов, на которые указывают указатели.
Можно производить следующие операции с указателями: присваивание значения указателя другому указателю того же типа, сложение и вычитание указателя и целого, вычитание и сравнение двух указателей, указывающих на элементы одного и того же массива, а также присваивание указателю нуля и сравнение указателя с нулем. Других операций с указателями производить не допускается. Нельзя складывать два указателя, перемножать их, делить, сдвигать, выделять разряды; указатель нельзя складывать со значением типа float или double; указателю одного типа нельзя даже присвоить указатель другого типа, не выполнив предварительно операции приведения (исключение составляют лишь указатели типа void*).