Остойчивость формы и остойчивость нагрузки
Рассмотрение этого вопроса позволяет установить природу остойчивости, выяснить физические причины возникновения восстанавливающего момента при наклонениях судна. В соответствии с метацентрическими формулами остойчивости (углы Θ и Ψ выражены в радианах):
mΘ = γV h Θ = γV (r – α) Θ = γV r Θ – γV α Θ;
МΨ = γV Н Ψ = γV (R – α) Ψ = γV R Ψ – γV α Ψ.
Таким образом, восстанавливающие моменты mΘ , МΨ и плечи статической остойчивости lΘ, l Ψ представляют собой алгебраическую сумму их составляющих:
mΘ = mф + mн; МΨ = Мф + Мн;
lΘ = lфΘ + lнΘ ; l Ψ = l фΨ + l нΨ,
где моменты
mф = γV r Θ;
Мф= γV R Ψ,
принято называть моментами остойчивости формы, моменты
mн = – γV α Θ;
Мн = – γV α Ψ,
моментами остойчивости нагрузки, а плечи
lфΘ = mф / γV;
lфΨ = Мф / γV,
поперечными и продольными плечами остойчивости формы, плечи
lнΘ = – mн / γV;
lнΨ = – Мн / γV,
поперечными и продольными плечами остойчивости нагрузки.
Так как: r = ; R = ; α = zg – zc,
где Jx и Jyf – момент инерции площади ватерлинии относительно поперечной и продольной центральной оси соответственно, то моменты формы и нагрузки можно представить в виде:
mф = γ Jx Θ , Мф= γ Jyf Ψ;
mн = – γV (zg – zc) Θ , Мн = – γV(zg – zc) Ψ.
По своей физической природе момент остойчивости формы всегда действует в сторону, противоположную наклонению судна, и, следовательно, всегда обеспечивает остойчивость. Он вычисляется через момент инерции площади ватерлинии относительно оси наклонения. Именно остойчивость формы предопределяет значительно большую продольную остойчивость по сравнению с поперечной т.к. Jyf » Jx.
Момент остойчивости нагрузки из-за положения ЦТ выше ЦВ α = (zg – zc ) > 0, всегда уменьшает остойчивость судна и по существу она обеспечивается только остойчивостью формы.
Можно предположить, что в случае отсутствия ватерлинии, например, у подводной лодки в подводном положении, момент формы отсутствует (Jx = 0). В подводном положении подводная лодка за счет балластировки специальных цистерн, имеет положение ЦТ ниже ЦВ, в результате ее остойчивость обеспечивается остойчивостью нагрузки.
Определение мер начальной остойчивости
Судна
5.7.1. Посадка судна прямо и на ровный киль. В случаях, когда судно плавает с незначительными углами крена и дифферент, меры начальной остойчивости могут быть определены с помощью метацентрических диаграмм.
При заданной массе судна, определение мер начальной остойчивости сводится к определению аппликат метацентров (или метацентрических радиусов и аппликаты ЦВ) и аппликаты ЦТ.
Аппликата ЦВ zc и метацентрические радиусы r, R являются характеристиками погруженного объема судна и зависят от осадки. Эти зависимости представлены на метацентрической диаграмме входящей в состав кривых элементов теоретического чертежа (рис.21). По метацентрической диаграмме (рис.42) можно не только определить zc и r, но при известной аппликате ЦТ, найти поперечную метацентрическую высоту судна.
На рис.42 представлена последовательность расчета поперечной метацентрической высоты судна при приеме груза. Зная массу принятого груза m и аппликату его центра тяжести z, можно определить новую аппликату ЦТ судна zg1 по формуле:
zg1 = zg + ( z– zg),
где zg – аппликата ЦТ судна до приема груза.
5.7.2. Посадка судна с дифферентом.При плавании судна с дифферентом в воду входят более полные участки корпуса, что приводит к увеличению площади ватерлинии (остойчивости формы) и соответственно поперечной метацентрической высоты. У промысловых судов кормовые обводы полнее носовых, поэтому следует ожидать при дифференте на корму увеличение, а при дифференте на нос уменьшение поперечной остойчивости судна.
Рис.42. Метацентрическая Рис.43. Диаграмма Фирсова – Гундобина
диаграмма
Для вычисления поперечной метацентрической высоты судна с учетом дифферента используют диаграммы Фирсова – Гундобина, начальной остойчивости КТИРПиХ и интерполяционные кривые.
Диаграмма Фирсова – Гундобина (рис.43), отличается от диаграммы Фирсова тем, что содержит кривые zm и zc, значения которых определяются по известным осадкам судна носом и кормой.
Диаграмма начальной остойчивости КТИРПиХ (рис.44) позволяет определить аппликату метацентра судна zm по известной массе Δ и абсциссе его центра тяжести xg.
По диаграмме интерполяционных кривых (рис.45) можно при известных осадках судна носом и кормой найти поперечный метацентрический радиус r и аппликату центра величины судна zc.
Диаграммы, показанные на рис. 43 – 45, позволяют найти zm при любой посадке судна, в том числе и на ровный киль. Следовательно, они дают возможность проанализировать влияние дифферента на начальную поперечную остойчивость судна.
Рис.44. Диаграмма начальной Рис.45.Диаграмма для определения zc и r
остойчивости траулера типа “Карелия“