Порядковое и количественное значение числа.

В старшей группе детей начинают впервые учить пользоваться порядковыми числительными. В обиходе пятилетние дети хотя и пользуются. порядковыми числительными, но употребляют их часто неверно, подменяя ими количественные числительные. Поэтому необходимо раскрыть значение порядковых числительных. Раскрыть порядковое значение числа позволяет сопоставление его с количественным значением. Когда хотят узнать, сколько предметов, их считают: один, два, три, четыре и т. д., т. е., считая так, находят ответ на вопрос сколько? Но когда нужно найти очередность, место предмета среди других, считают по-иному. Отвечая на вопросы который? какой по счету?, считают: первый, второй, третий и т. д.

порядковое и количественное значение числа. - student2.ru

Дети часто путают вопросы который? и какой? Последний требует выделения качественных свойств предметов: цвета, размера и др. Чередование вопросов сколько? который? какой по счету? какой? позволяет раскрыть их значение.

Детям уже не раз показывали, что для ответа на вопрос сколько? не имеет значения, в каком порядке считать предметы. Теперь они узнают, что для определения порядкового места предмета среди других направление счета имеет существенное значение. Педагог демонстрирует это, пересчитывая одни и те же предметы в разных направлениях. Он выясняет, например, что среди 7 флажков синий — на 5 месте, если вести счет слева направо, а если считать справа налево, то он на 3 месте.

Дети пробуют определить место предмета среди других, ведя счет в разных направлениях. Делают вывод, что, определяя, на каком по счету месте предмет, надо указывать направление счета (третий слева, пятый справа и т. д.).

В качестве счетного материала сначала используют однородные предметы, отличающиеся цветом или размерами, например разноцветные флажки или кружки, елочки разной высоты и пр., а позднее — совокупности предметов разного вида, например игрушки (персонажи сказки «Теремок» и т. п.).

В порядковом счете детей упражняют и на бессюжетном материале, например на моделях геометрических фигур, полосках разных размеров и т. п.

Тренируясь в порядковом счете, они определяют место предмета среди других, находят предмет, занимающий определенное порядковое место («Какой предмет на третьем месте?»), располагают предметы в указанном порядке.

Некоторые дети, определяя место предмета, заменяют порядковые числительные количественными. Педагог прислушивается к тому, как дети ведут счет, и указывает на ошибки. Особенно эффективны так называемые комбинированные упражнения, в которых порядковый счет сочетается с сопоставлением

двух и более совокупностей предметов, группировкой геометрических фигур, упорядочиванием предметов по размеру.

Обучение порядковому счету является основной задачей 3—4 занятий, в дальнейшем навыки порядкового счета закрепляют в ходе работы над новым материалом.

СРАВНЕНИЕ СМЕЖНЫХ ЧИСЕЛ

Сравнивать смежные числа — значит определять, какое из них больше, а какое меньше.

С опорой на наглядный материал дети уже сравнивали смежные числа. На основе «сопоставления 2 совокупностей, в одной из которых на 1 предмет больше (меньше), чем в другой, их знакомили с приемами получения всех чисел до 10. Поэтому они имеют представление о связях между числами, т. е., какое из смежных чисел больше (меньше) какого. Необходимо углубить эти представления.

На конкретных примерах детям раскрывают постоянство связей между смежными числами (3 всегда больше 2, а 2 меньше 3, и т. д.). С самого начала подчеркивают, что понятия «больше», «меньше» относительные, каждое число (кроме единицы) больше или меньше другого в зависимости от того, с каким числом его сравнивают (3>2, но 3 < 4). Начинают формировать представление об определенной последовательности чисел.

Практическое установление разностных отношений между смежными числами позволяет подвести детей к пониманию взаимно-обратных отношений между ними (4 больше 3: если к 3 добавить 1, будет 4; 3 меньше 4: если от 4 отнять 1, будет 3). Отношения между смежными числами будут изучаться уже в подготовительной к школе группе.

Детей учат сравнивать все числа в пределах 10. Начинать работу целесообразно со сравнения чисел 2 и 3, а не 1 и 2.

Наглядной основой сравнения чисел служит сопоставление 2 совокупностей предметов. При сопоставлении 2 предметов с 3 более четко выступают количественные соотношения, чем при сопоставлении 1 предмета с 2. 1 предмет еще не воспринимается ребенком как множество, включающее 1 элемент. Ярко выраженные свойства предмета отвлекают детей от установления количественных соотношений совокупностей.

Показать постоянство связей между числами позволяет неоднократное сравнение одних и тех же смежных чисел с опорой на сопоставление совокупностей разных предметов. Например, сопоставив 2 матрешек с 3 кубиками, выясняют, что матрешек

меньше, чем кубиков, а кубиков больше, чем матрешек. Значит, 2 меньше 3, а 3 больше 2. Проверяют, всегда ли это так. Для этого 2—3 раза меняют счетный материал. Сопоставляют другие совокупности, состоящие из 2 и 3 предметов, и делают вывод, что 3 всегда больше 2, а 2 меньше 3.

Аналогичным образом сравнивают еще 2—3 пары смежных чисел. Работу детей организуют одновременно е разным счетным материалом. Одни дети сопоставляют, например, 4 елочки и 5 грибочков, другие — 4 утенка и 5 цыплят, третьи — 4 круга и 5 квадратов и т. д. Выясняют, что во всех случаях 5 больше 4, а 4 меньше 5.

Выяснение отношений «больше», «меньше» в связи друг с другом способствует формированию представления о взаимно-обратном характере отношений между числами.

Большое внимание уделяют упражнению детей в уравнивании совокупностей. Уравнивая совокупности, дети практически устанавливают разностные отношения между смежными числами.

Полезно сопоставлять совокупности предметов разных размеров или занимающих разную площадь. Это позволит параллельно закреплять представления о независимости числа предметов от их пространственных свойств.

Сопоставление совокупностей предметов, отличающихся размерами, формой расположения и пр., позволяет акцентировать внимание детей на значении приемов поштучного соотнесения предметов (наложения, приложения и др.) для выяснения отношений «равно», «не равно», «больше», «меньше». Дети начинают пользоваться этими приемами как способами наглядного доказательства того, какое из 2 сравниваемых чисел больше или меньше.

Вариантами являются такие задания, в которых говорится о предметах, представленных условными знаками, моделями геометрических фигур (кружками, квадратами, точками и пр.). Дети, например, угадывают, кого в трамвае было больше: мальчиков или девочек, если мальчики представлены на доске большими кружками, а девочки — маленькими. Опыт показывает, что ребенок шестого года жизни легко принимает такую абстракцию. Появляется возможность использования «промежуточных» средств — меток, моделирования отношений величин.

Детей учат получать не только «равенство из неравенства», но и, наоборот, «из равенства неравенство», причем сравнение чисел производят на основе сопоставления совокупностей, воспринимаемых как зрительно, так и на слух, на ощупь, на основе мышечного чувства. Включение в активную работу разных анализаторов служит обобщению соответствующих представлений. Даются, например, такие задания: «Поднимите руку на 1 раз больше (меньше), чем было пуговиц на карточке у Саши.

порядковое и количественное значение числа. - student2.ru

Сколько раз вы подняли руку? Почему?», «Сколько вы услышали звуков? Сколько надо отсчитать треугольников, чтобы их было на 1 больше (меньше), чем вы услышали звуков?» Дети сначала сравнивают числа, а затем производят соответствующие действия. Выполнив задание, ребенок должен не только сказать, сколько положил предметов или сколько выполнил движений, но и объяснить, почему именно столько, т. е. сравнить числа.

Сравнивая числа, некоторые дети называют только одно из них: «5 больше» или «4 меньше». Добиваясь точного ответа, педагог задает наводящие вопросы, например: «С каким числом мы сравнили число 5?», «Какого числа оно больше (меньше)?» Пользуясь возможностью подчеркнуть относительность выражений «больше», «меньше», воспитатель предлагает ребенку сравнить данное число с предшествующим или последующим. Он говорит, например: «Ты сказал, что 4 меньше. А если я назову числа 3 и 4, что ты скажешь про число 4?» Дети убеждаются, что одно и то же число может быть и больше, и меньше другого в зависимости от того, с каким числом его сравнивают. Поэтому надо называть оба сравниваемых числа и указывать, какое из них больше (меньше) какого. Иначе ответ будет неточным.

Показать относительность выражений «больше», «меньше» позволяет сравнение нескольких чисел, следующих друг за другом. Наглядной основой для такого сравнения служат совокупности однородных предметов (кружков, квадратов и др.), расположенных горизонтальными рядами точно друг под другом.

Наиболее ценным приемом является построение числовой лесенки. Окрашенные с 2 сторон кружки (квадраты) синего и красного цвета раскладывают по 5 (10) шт. рядами. Количество кружков в ряду последовательно увеличивают на 1, причем «дополнительный» кружок повернут другой стороной. Числовая лесенка позволяет наглядно представить определенную конечную последовательность чисел натурального ряда.

Предлагая в каждом следующем ряду положить столько же кружков, сколько в данном, да еще 1, педагог напоминает детям способ получения последующего числа (n + 1).

Примечание. В старшей группе ограничиваются построением числовой лесенки в пределах первого пятка.

Убирая по одному кружку из каждого ряда, дети вспоминают способ получения каждого предыдущего числа (n— 1). Далее устанавливают связь между количеством кружков в ряду и его порядковым номером. Сначала числа сравнивают попарно, а потом каждое число с предыдущим и последующим. С опорой на наглядность дети ведут счет в прямом и обратном порядке.

Важно, чтобы, работая самостоятельно, они строили лесенку строго по порядку, т. е. увеличивали количество кружков каждого следующего ряда на 1.

Работу по сравнению смежных чисел сочетают с упражнениями в группировке геометрических фигур, с сопоставлением размеров предметов и др., разнообразя задания. Так у детей формируют представление об определенной последовательности чисел и подводят их к пониманию взаимно-обратных отношений между смежными числами.

ВЕЛИЧИНА.

К моменту перехода в подготовительную к школе группу дети должны научиться выделять измерения (длину, ширину, высоту) и оценивать размер предметов с точки зрения 2—3 измерений. Для выделения данных величин используют упражнения в сопоставлении предметов. От сопоставления предметов, отличающихся одним измерением, дети переходят к сопоставлению предметов по 2—3 измерениям. («Какая дощечка длиннее (короче)? Какая шире (уже)? Какая толще (тоньше)?»)

Расширяется круг сопоставляемых предметов. Используют предметы, с которыми дети постоянно встречаются в различной деятельности (ленты, шарфики, скакалки, шнурки, ремешки, лыжи, коробки и пр.).

Сопоставление величин осуществляется не изолированно, а в системе рассмотрения других свойств предметов (их предназначение, части, цвет, материал и др.). Это имеет существенное значение для умственного развития детей.

Упражнения в сопоставлении величин значительно усложняются. Дети не только определяют размерные отношения между наглядно представленными предметами, но и воссоздают подобные отношения по представлению. Воспитатель дает им, например, такие задания: нарисовать 2 дорожки, чтобы одна из них была длиннее другой; нарисовать 2 ленточки одинаковой длины, разной ширины или одинаковой длины и ширины и т. п.

Особенно полезны упражнения, включающие изменение размера предметов

Используют 2 вида таких упражнений: изменение отдельных измерений объекта при сохранении его общей массы и уравнивание размеров предметов.

Производя изменение отдельных измерений, дети видят, что изменение одного из измерений при сохранении массы в целом ведет к изменению другого измерения. Например, столбик пластилина сделали длиннее (раскатали), зато он стал тоньше. Данное упражнение способствует развитию различения детьми отдельных измерений.

Упражняя в уравнивании размеров предметов, предлагают подобрать, а позднее изготовить предмет, равный образцу. Например, подобрать полоску для ремонта книги (коробки), палочку для вертушки и пр. или сделать ленточки для игры в "пятнашки", изготовить прямоугольник (квадрат).

Задание подобрать предмет такого же размера дают детям вне занятий. Оно предпосылается упражнению в изготовлении объекта, равного образцу, на занятии. Уравнивание размеров предметов производят по 1—2 измерениям. Объекты для уравнивания всегда подбирают большего или меньшего размера, чем образец, и выясняют, какой из них годится, а какой не годится, почему.

Полезно предлагать детям составить предмет, равный образцу, из 2 других. Например, предложить ребенку подобрать 2 дощечки, длина которых вместе равна длине палочки-мерки, в свою очередь равной длине крыши домика, и т. п.

Если предметы непосредственно сопоставить нельзя, то вводится посредник — мерка. В качестве условной мерки используют разные предметы: полоску бумаги, кусок веревки, тесьму и пр. В этот период используют мерку большего размера, чем измеряемый предмет. На мерке отмечают части, занимаемые предметами. Расстояние между отметками показывает, на сколько один предмет длиннее (шире, выше) другого. Каждый предмет может быть измерен отдельной меркой. Сопоставление мерок позволяет уточнить разницу в размере предметов. Например, длина и ширина предмета могут быть сравнены с помощью 2 веревок, соответственно равных его длине и ширине.

Научившись пользоваться меркой-посредником, дети могут сравнивать размеры предметов, которые непосредственно сопоставить нельзя, например с помощью планки сравнить длину 2 столов.

Особое место в старшей группе отводят упражнениям в группировке и упорядочивании предметов по отдельным измерениям (по длине, ширине и др.).

Группируя предметы по длине, дети помещают в одну группу все предметы одинаковой длины, несмотря на их различия в высоте и ширине. Выясняют, чем похожи и чем отличаются предметы, попавшие в одну группу, почему в одной группе оказались предметы разной высоты и т. п.

Дети видят, как изменяется место предмета среди других в зависимости от того, по какому признаку они сопоставляются и упорядочиваются в ряд. Например, коричневый ремешок был первым, когда ремешки раскладывали в ряд от самого длинного до самого короткого, а когда ремешки разложили в ряд от самого широкого до самого узкого, он оказался на 3 месте. Постепенно у детей формируется умение самостоятельно выделять признаки, по которым можно сравнить предметы. Они научаются последовательно сопоставлять предметы по выделенному признаку, не переключаясь на другие.

Полезно побуждать ребят еще до выполнения практического действия делать предположения (планировать действие). С этой целью надо ставить вопросы: «По какому признаку можно сгруппировать предметы? В каком порядке строить ряд предметов? Как выбирать нужный по порядку предмет?» Выполняя соответствующие действия, дети как бы проверяют верность предположений.

Постепенно ребенок учится осознанно пользоваться правилом выбора следующего элемента при построении ряда. Выбирать надо каждый раз самый большой или самый маленький предмет среди всех оставшихся в зависимости от того, в каком порядке решили разместить предметы.

Усложнение упражнений в построении ряда величин в старшей группе выражается в следующем: сопоставляют большее количество предметов (до 10 шт.); включают упражнения в подборе и построении в ряд не отдельных предметов, а пар предметов; используют предметы, отличающиеся уже не только одним, но и 2—3 измерениями. Одни и те же предметы размещаются в ряд то по одному, то по другому признаку (например, цилиндры сначала расставляют в порядке возрастающей высоты, а затем в порядке возрастающей толщины).

Пятилетних детей знакомят с некоторыми свойствами упорядоченного множества предметов. Свойства ряда выделяются непосредственно в ходе практических действий. Построив ряд, дети находят самый большой (длинный, высокий) или самый маленький (короткий, низкий и т. д.) предмет в ряду, а затем называют предметы по порядку, шагая по ряду то вверх, то вниз (самая низкая, выше, еще выше, самая высокая и т. п.), фиксируя определенность направления ряда. Сравнение каждого из элементов ряда со смежными, а несколько позднее со всеми предшествующими и последующими позволяет детям понять относительность значения признака. («Каждый элемент в ряду больше, чем все предыдущие, и меньше, чем все последующие, или наоборот».) Они перечисляют: красная полоска длиннее синей, голубей, белой, но короче желтой и зеленой и т. п.

Подобные упражнения подводят детей к осознанию свойства транзитности (если а > Ь и Ь > с, то а > с),

порядковое и количественное значение числа. - student2.ru

которым обладает отношение порядка. Например, установив, что зеленая пирамидка выше красной, а красная — выше синей и т. д., дети приходят к выводу, что зеленая пирамидка выше и синей, и других пирамидок, стоящих за ней. Для закрепления усвоения детьми свойства транзитивности используют игры: «Кто первый?» «Мишки (или матрешки) забыли, кто за кем стоял. Первый должен быть меньше второго, а второй — меньше третьего. Какого размера первый мишка? А третий?»

«Чья коробочка?» «У меня 3 коробочки от заводных игрушек: курочки, цыпленка и утенка. Курочка больше цыпленка, цыпленок больше утенка. Какая коробка утенка? Поместится ли курочка в коробку утенка? А утенок в коробку для курочки?»

«Угадайте, кто выше (ниже) ростом». «Петя выше Саши, а Саша выше Коли. Кто из мальчиков самого низкого роста? А самого высокого?»

Вначале дети решают такие задачи, опираясь на наглядный материал, а позднее — лишь на основе словесного описания. Наглядность применяют для доказательства правильности ответа. Воспитатель обращает внимание на постоянство разности между соседними членами упорядоченного ряда. Дети с помощью мерки сравнивают размеры предметов специально составленного ряда и убеждаются в том, что любой предмет в ряду (начиная со второго) на одну и ту же величину больше (меньше) соседнего.

Определить размер предмета (длину, ширину) ребята могут, прикладывая одну к другой несколько равных мерок. Например, оказывается, что длина первой полосочки — 1, второй — 2, третьей — 3 мерки и т. д.; сравнив результаты измерения, дети устанавливают, что каждая полосочка на одну и ту же длину мерки больше или меньше соседней полоски.

Для закрепления знаний о свойствах упорядоченного ряда используют упражнения, требующие от детей проявления смекалки, сообразительности. Например, дают задание построить ряд от промежуточного элемента, найти место пропущенного или лишнего элемента в ряду, вставить в уже построенный ряд промежуточные элементы.

Заданиям придают игровой характер, используя игры «Угадайте, где пропущено!», «Угадайте, которого не хватает!», «Который лишний?», «Что изменилось?».

Большое внимание уделяют развитию у детей глазомера. На основе овладения приемами непосредственного сопоставления

размера предметов (наложение, приложение, измерение при помощи мерки) дети учатся решать задачи, требующие все более и более, сложных глазомерных действий. Вначале им дают задания найти на глаз предметы большего и меньшего, чем образец, размера, позднее — предметы, равные образцу, причем постепенно расширяют площадь, на которой осуществляется поиск предметов.

В качестве образца могут служить разные предметы. В то же время один и тот же образец может использоваться для сравнения предметов и по длине, и по ширине, и т. д. Каждый раз дети проверяют правильность решения глазомерной задачи, пользуясь приемом приложения (вплотную) или измерения меркой. Аналогичные задачи можно ставить перед детьми в разных видах деятельности.

В процессе упражнения детей в построении упорядоченного ряда педагог вводит правило: прикладывать и переставлять предметы нельзя. Каждый следующий элемент среди оставшихся дети находят на глаз.

Можно предлагать и более сложные задачи. Например, выбрать на глаз 2 предмета и составить из них третий, равный образцу; установить соответствие между несколькими (2—3) рядами предметов, упорядоченных по размеру. Данной работе необходимо уделить внимание не столько на занятиях по математике, сколько в часы игр. Вне занятий используют дидактические игры «Сложи дощечки», «Расставь по порядку», «В какую коробочку?», «Кто первый?» (автор Т. Г. Васильева).

В процессе действий с игрушками и предметами дети научились еще в средней группе элементарно оценивать расстояния «ближе», «дальше», получили представления о понятиях «близко», «далеко». В практической деятельности (в игре, в труде) перед ними часто возникает необходимость определить, какой предмет ближе, дальше находится («Кто дальше бросил мешочек (шишку, снежок)?»), расположить предметы на определенном расстоянии друг от друга и др. В старшей группе детей можно учить измерять расстояние шагами. Упражнения целесообразно организовать на прогулке.

В процессе выполнения задания педагог помогает детям установить правила измерения: чтобы получился самый короткий путь, измерять надо по прямой линии; идти лучше широким шагом, равномерно; шаг — мерка. Мерка на всем расстоянии должна быть одинаковой. Дети с увлечением определяют, сколько шагов до дерева, до ящика с песком и др. Обнаруживается, что при измерении одного и того же расстояния результаты у разных детей и у педагога получаются разные.

«Сережа говорит, что от песочного ящика до скамейки 5 шагов, а Лена утверждает — 6! Кто из них прав? У кого получилось большее число шагов?» — ставит вопросы педагог. В результате неоднократных наблюдений дети утверждают, что количество шагов, получаемое в итоге, зависит от ширины шага. Когда надо сравнить расстояния, например определить, кто дальше бросил мешочек, измерение шагами должен производить один ребенок. По мере накопления опыта измерения расстояний детям предлагают на глаз определить, сколько шагов до того или иного предмета. Высказав предположение, ребята делают проверку, измеряя расстояние шагами.

Опыт непосредственного сопоставления размеров предметов создает предпосылки для сравнения по представлению. Детям дают задания: показать, какого размера тот или иной предмет, например какой высоты забор, ворота, детский столик; назвать предметы, которые больше, меньше (длиннее, короче) образца или равны ему; или просто сказать, какой величины карандаш, чашка, мяч, сравнив их с теми, которые видели раньше2; назвать 2 предмета, про один из которых можно сказать, что он длиннее (короче), шире (уже), выше (ниже) другого.

К моменту перехода в подготовительную к школе группу дети должны научиться не только выделять длину, ширину, высоту предмета, но и оценивать его сравнительный объем. Они должны овладеть способами сопоставления линейных размеров, умением устанавливать связь между способом ориентировочного действия (приложения вплотную) и соответствующим признаком, употреблять точные количественные характеристики величин. Величина становится объектом элементарных математических действий. Дети получают первые конкретные представления о ее свойствах.

Создаются предпосылки для обучения детей измерению величин.

ФОРМА.

Работе, обеспечивающей развитие у детей представлений о форме, посвящают основную часть на 3—4 занятиях, а также небольшую часть (от 4 до 8 мин) еще на 10—12 занятиях.

На занятиях по математике детей учат различать модели близких по форме фигур (круга и фигуры, ограниченной овалом), производить элементарный анализ воспринимаемых фигур, выделять и описывать их некоторые свойства. Детей знакомят с различными видами треугольников, фигур овальной формы, учат видеть изменения по форме, находить тождественные фигуры. Ребят обучают последовательно обследовать и описывать форму предметов, находить ее сходство с геометрическим образцом и отличие от него.

порядковое и количественное значение числа. - student2.ru

Представления о форме развивают не только на занятиях. Существенное значение имеет использование дидактических игр. Дидактические игры органически включают в систему данной работы. Они позволяют не только уточнить и закрепить представления детей о форме, но и обогатить их.

Широкое использование наглядного материала способствует формированию, обобщенных представлений о геометрических фигурах. В старшей группе каждая фигура представляется детям моделями разной окраски, разного размера и с разным соотношением сторон, сделанными из разных материалов (бумаги, картона, фанеры, пластилина и пр.). Используют таблицы и карточки для индивидуальной работы, на которых рисунки фигур одного вида или разных видов расположены в разном пространственном положении.

Всю работу строят на основе сопоставления и противопоставления моделей геометрических фигур. Для выявления признаков сходства и отличия фигур их модели сначала сопоставляют попарно (круг и фигура овальной формы, квадрат и прямоугольник), затем сопоставляют сразу от 3 до 5 фигур каждого вида.

В целях знакомства детей с вариантами фигур одного вида сопоставляют до 5 вариантов фигур данного вида: прямоугольники и треугольники с разными соотношениями сторон, фигуры, ограниченные овалом, с разным соотношением осей. Дети находят тождественные фигуры ( игровые упражнения «Найди пару», «Подбери ключ к замочку»).

Характерные свойства каждой из геометрических фигур выявляются путем сопоставления 4—5 ее моделей, отличающихся окраской, размером, материалом.

В младших группах, рассматривая с детьми модели фигур, педагог придерживался определенного плана. Задавались вопросы: «Что это? Какого цвета? Какого размера? Из чего сделаны?» Теперь при рассматривании моделей фигур задают вопросы, побуждающие детей выделять элементы фигур, устанавливать соотношения между ними. Например, обследуя прямоугольник, педагог спрашивает: «Что есть у прямоугольника? Сколько сторон (углов)? Что можно сказать о размере сторон?»

Определенный порядок рассматривания и сравнения моделей служит развитию умения у детей последовательно выявлять форму геометрических фигур, сравнивать их однородные признаки, выделять существенные признаки (наличие частей, их количество, соотношение по размеру) и отвлекаться от несущественных (окраска, размер, материал и др.).

Дети получают первые навыки индуктивного мышления. На основе ряда фактов они делают простейшие умозаключения: у красного квадрата стороны равны, у синего квадрата — равны, у зеленого квадрата тоже равны, значит, у любого квадрата стороны равны.

Варьирование частного признака моделей квадрата (окраски) позволило выявить общее, характерное для квадрата — равенство его сторон.

Сопоставляя фигуры, воспитатель предоставляет ребятам максимум инициативы и самостоятельности.

Для детей шестого года жизни существенное значение по-прежнему имеет использование приема осязательно-двигательного обследования моделей. Педагог напоминает детям прием обведения контура фигуры пальцем и предлагает им следить за движением пальца или указки по контуру. Для выявления признаков отличия фигур друг от друга продолжают использовать приемы наложения и приложения. Дети считают элементы фигур, сравнивают количество сторон и углов моделей фигур одного вида, но разного цвета или размера, а также количество сторон и углов квадрата и треугольника, прямоугольника и треугольника.

Примечание. Важно с самого начала сформировать у них правильные навыки показа элементов. Вершина — это точка. Дети должны ставить палец или указку точно в точку соединения сторон. Стороны многоугольника — отрезки. Показывая их, ребенок должен провести пальцем вдоль всего отрезка от одной вершины до другой. Угол — часть плоскости, заключенная между двумя лучами (сторонами), исходящими из одной точки (вершины). Показывая угол, педагог накладывает указку на одну из его сторон и поворачивает ее до совпадения с другой стороной. Дети показывают угол, производя движение рукой от одной стороны до другой.

Для закрепления представлений о фигурах наряду с приемами, которые применялись в средней группе, используют и новые. Так, дети делят фигуру на равные части различными способами, составляют целые фигуры из частей. Из одних фигур составляют другие, выкладывают из палочек разной длины фигуры одной и той же формы с различным соотношением сторон, лепят пространственные фигуры (куб, шар, цилиндр) из пластилина.

В старшей группе усложнение упражнений в группировке предметов по сравнению с предыдущей выражается в следующем: увеличивают количество сопоставляемых фигур и видов фигур; используют модели, отличающиеся большим количеством признаков (окраской, размером, материалом); одни и те же модели группируют по разным признакам: форме, цвету, размеру; упражнения в группировке сочетают с обучением порядковому счету, с изучением состава чисел из единиц и связей между числами.

Педагог побуждает детей делать предположение, как могут быть сгруппированы фигуры, сколько групп получится. Высказав предположение, они группируют фигуры.

Большое внимание уделяют упражнениям в установлении взаимного положения геометрических фигур, так как они имеют существенное значение для развития геометрических представлений. Сначала детям предлагают определить взаимное положение 3 фигур, а позднее — 4—5. Рассматривание узора, составленного из геометрических фигур, проводят в определенном порядке: вначале называют фигуру, расположенную в центре (посередине), затем — вверху и внизу, слева и справа, соответственно в верхнем левом и правом углу, в нижнем левом и правом углу (в последнем случае используют карточки с 5 разными геометрическими фигурами, рекомендованные Е. И. Тихеевой).

Дети должны научиться не только последовательно выделять и описывать расположение фигур, но и находить узор по образцу и описанию. Позднее они учатся воспроизводить узор, составленный из геометрических фигур, по зрительно воспринимаемому образцу и по указанию педагога Упражнения в установлении взаимного положения фигур чаще проводят в форме дидактических игр («Что изменилось?», «Найдите такой же узор!», «Найди пару!» ). Дети постепенно приобретают навык расчленять сложный узор на составляющие его элементы, называть их форму и пространственное положение.

Создаются предпосылки для развития аналитического восприятия формы предметов, состоящих из нескольких частей.

Анализ и описание формы предметов. Очень важно с начала учебного года закреплять умение детей соотносить предметы по форме

с геометрическими образцами, описывать форму предметов, состоящих не более чем из 1—3 частей (форма их близка к геометрическим образцам). Дети определяют форму предметов, нарисованных на картинке, представленных аппликацией. На занятиях эти упражнения занимают 3—5 мин. Воспитатель предлагает детям вне занятий поиграть, используя игры «Геометрическое лото», «Семь в ряд», «Домино».

В дальнейшем упражнения данного вида усложняют: ребятам предлагают определить форму предметов, состоящих из все большего количества частей. Это способствует овладению умением анализировать и описывать форму предметов. Большое внимание этой работе уделяют вне занятий. В процессе дидактических игр («Найди по описанию!», «Какая избушка?», «Кто больше увидит?», «Цветочный магазин») дети учатся не только анализировать форму сложных по конструкции предметов, но и, играя, воссоздавать ее («Мы составляем Петрушку», «Быстрое выкладывание форм» и др.).

Наши рекомендации