Дескриптивное и конструктивное определение системы

Познавательные возможности теории систем реализуются путем отражения объектов (реальных и абстрактных) в ее основных понятиях, которые имеют весьма обобщенный смысл, что позволяет использовать их в различных науках.

Центральное понятие - система. В настоящее время нет единства в определении этого понятия. При этом понятия не противоречат друг другу, но отличаются полнотой.

Если теория систем претендует на роль общенаучной методологии, то понятие "система" должно быть универсальным, отражать всеобщность системных свойств и закономерностей. Поэтому вряд ли можно согласиться с той точкой зрения, что более или менее полное определение системы может быть дано исключительно по отношению к какому-либо из ее типов, изучаемому той или иной отраслью знания. При использовании общенаучной методологии, в том числе теории систем, они должны концентрироваться на исследовании отражения общего в особенном, а не рассматривать особенное само по себе, в отрыве от целого. То есть исследования в конкретной области должны опираться на общее понятие системы, что не исключает необходимости определения того особого типа систем, который этой отраслью знания изучается.

Все многообразие подходов к определению понятия "система"(а их известно более сорока) можно разделить на следующие группы. Первуюгруппусоставляют определения системы как выбираемой исследователем любой совокупности переменных, свойств или сущностей (такой подход характерен для У.Р. Эшби, а также М. Тоды и Э. Шуфорда). Если следовать подобной логике, то системой могут оказаться два любых произвольно выбранных объекта, имеющих в действительности настолько слабые взаимосвязи, что они либо не могут быть уловлены наблюдателем, либо ими можно пренебречь.

Вторую группу составляют определения системы, связывающие ее с целенаправленной активностью. Например, И.М. Верещагиным система определена как "организованный комплекс средств достижения общей цели". Н.Г. Белопольский считает, что материальная система - это созданная с определенной целью природой или человеком часть объективного материального мира, которая состоит из относительно устойчивых взаимодействующих и взаимосвязанных элементов, развитие и совершенствование которой зависит от взаимодействия с окружающей средой. Если имеются в виду только искусственные системы, остается непонятным, почему из поля зрения выпали естественные. Если же, как во втором определении, рассматриваются оба типа систем, то для природных объектов нужно признать существование субъекта, задающего цель (фактически - Бога-творца), что выходит за рамки научного исследования, по крайней мере в современных условиях. Далее, помимо развития и совершенствования (см. определение Н.Г. Белопольского), в системах могут происходить процессы деградации и разрушения, которые зависят не только от взаимодействия систем с окружающей средой, но и от внутренних свойств самой системы. Следовательно, ни первая, ни вторая группы определений не дают адекватного понимания системы.

Третья группабазируется на понимании системы как множества элементов, связанных между собой. В этом случае встает вопрос, можно ли определить что-либо через понятие множества, не имеющее определения и вводимое для каждого конкретного случая? Э.Р. Раннап и Ю.А. Шрейдер также выступают против определения системы через множество, заметив, что любая система допускает возможность различных ее членений, каждая из которых является множеством, т. е. систему можно рассматривать как множество, но сама по себе множеством она не является, с чем трудно не согласиться.

Четвертую группусоставляют наиболее общие определения системы как комплекса элементов, находящихся во взаимодействии. В этом случае может возникнуть заблуждение, что любые, даже очень слабо взаимодействующие объекты могут быть отнесены к категории "система" и рассмотрены с системных позиций.

A.M. Кориков и Е.Н. Сафьянова выделяют два аспекта в определении системы. Дескриптивное(описательное) определение, по их мнению, должно отвечать на вопрос о том, как отличить системный объект от несистемного; а конструктивное должно помочь исследователю в ответе на вопрос о том, как строить систему путем выделения ее из среды.

Дескриптивное определение системы проводит более четкую границу между системными и несистемными объектами и дает, таким образом, понятие системы "вообще", а конструктивное - базируется на общих принципах выделения системы из среды и предоставляет возможность определения понятия конкретной системы.

Наиболее оправданным подходом, отвечающим требованиям, предъявляемым дескриптивным определением к понятию "система", является введение его через понятия совокупности, взаимосвязи и целого. В соответствии с этим дадим следующее дескриптивное определение понятия "система". Системой является совокупность объектов, взаимосвязанных между собой, которые образуют единое целое, обладающее свойствами, не присущими составляющим его объектов, взятым в отдельности.

Конструктивный подход, как уже отмечалось, помогает исследователю построить систему путем выделения ее из среды и основан на рассмотрении структуры системы, определяемой ее функцией. С этой точки зрения любую открытую систему принято схематически представлять в виде "черного ящика" (рисунок 1.1).

Входы, или ресурсы системы представляют собой объекты, передаваемые системе из среды. При помощи входов осуществляется влияние среды на систему.

Выходы, или конечный продукт системы, - это объекты, передаваемые системой окружающей среде. Посредством выходов система может оказывать влияние на среду.

Описание системы через входы и выходы иногда называют внешним поскольку оно дает понимание связей системы с окружающей средой, оставляя без внимания то, что происходит внутри системы. Этот пробел восполняет внутреннее, локальное описание системы, рассматривающее механизм преобразования входов в выходы, т.е. процессор.

Рисунок 1.1 – Конструктивное описание системы

Процессор включает в себя правила преобразования входов в выходы; средства этого преобразования; его исполнителей (если в систему входит человек); объект преобразования, катализатор, способствующий ускорению преобразования, и время. Очень часто, то, что подлежит преобразованию (в экономических системах это предмет труда), не рассматривается как часть процессора, что скорее всего связано с тем, что оно считается частью входов системы. Но ведь в принципе любой объект системы, или "материал" для его построения, должен сначала быть поданным на входы и лишь потом присваивается системой как неотъемлемая составная часть. Еще один аргумент в пользу включения объекта преобразования в саму систему, в ее процессор, добавляет то, что и средства преобразования, и его исполнители, рассматриваемые как части процессора, тоже проходят через входы системы. Да и правила преобразования (например, технология) часто задаются системе извне. И наконец, объект преобразования вполне удовлетворяет предложенному В.Н. Садовским критерию, согласно которому множество элементов образует систему, если для каждого элемента справедливо хотя бы одно из двух: а) элемент имеет отношение хотя бы с одним другим элементом; б) по крайней мере один элемент имеет с ним отношения (причем для входных элементов справедливо только а), а для выходных - б). Все это позволяет включить объект преобразования в состав процессора системы. Объекты, не удовлетворяющие названному выше критерию системности, являются средой системы.

С учетом рассмотренного конструктивного определения системы, можно конкретизировать данное выше дескриптивное определение системы следующим образом.

Под системой следует понимать некоторую целостную совокупность, состоящую из отдельных элементов, которые связаны между собой материальными, энергетическими или информационными связями, в результате чего эта совокупность имеет некоторые специфические свойства, не присущие в полной мере каждому из входящих в него элементов.

Из этого определения видно, что весь окружающий нас реальный мир состоит из систем и сам представляет собой некоторую систему. Отсюда, если при рассмотрении какой-то конкретной системы выделить любой ее элемент, то он также окажется системой, состоящей из ряда других элементов, которые тоже являются системами и т. д.

Таким образом, каждая система является элементом другой, более крупной системы, и каждый элемент в свою очередь является системой, но только меньшей, чем та, в которую он входит.

Материальные, энергетические или информационные связи представляют собой не что иное, как операции (целенаправленное действие) по обработке материальных, энергетических или информационных потоков. Каждая из этих операций может выполняться несколькими элементами системы одновременно. Взаимное выполнение операций объединяет или связываетэлементы между собой. Поскольку элементы системы выполняют операции путем реализации своих свойств, то выполнение каждой операции обобщает и интегрирует свойства элементов, превращая их в некоторое специфическое свойство группы элементов, отличающееся от свойств каждого элемента.

Здесь следует отметить, что в зависимости от того, какие элементы выполняют операцию, она может быть неделимой (элементарной) или составной (системной). Так, если операция выполняется с помощью элементов некоторой системы, которая входит в состав другой системы в виде элемента, то на уровне последней эта операция будет неделимой, а на уровне первой - составной.

Все операции, которые выполняют элементы системы, складываются в некоторую последовательность(совокупность), называемую функционированием системы. Через способность достигать цель с помощью функционирования выявляются возможности или свойства всей системы в целом. Отсюда, функционирование, определяя взаимосвязь элементов в системе через совместное выполнение ими операций, отражает собой структуру системы.

Структура системы и ее элементы могут быть подвижными, то есть изменяющимися, объектами даже тогда, когда система не меняет своего назначения, то есть цель и другие функции системы остаются постоянными. Это, как правило, происходит в случае решения задачи совершенствования системы, например, повышения ее эффективности.

Очевидно, что структура и состав системы обусловливают друг друга, однако ни состав элементов, ни структура не определяют друг друга однозначно. Так, структура системы может быть одна и та же, а состав элементов, выполняющих операции, - разный. Это объясняется тем, что необходимые для выполнения операций свойства могут иметь совершенно разные элементы, а значит, одни и те же операции могут выполняться разными элементами.

В то же время, структура системы - состав операций и их последовательность - может изменяться, а состав элементов оставаться постоянным. Это, конечно, возможно, когда неизменный состав элементов имеет свойства, достаточные для обеспечения изменения структуры.

Если система создана или модернизирована и какой-то период времени не меняет свои состав и структуру, то граница такой системы на данный период определяется в основном ее структурой.

Дело в том, что некоторые элементы могут принадлежать сразу нескольким системам, но в разное время, т. е. одни и те же элементы могут мигрировать из системы в систему, участвуя в функционировании каждой из них, используя соответствующие свои свойства. Обычно такие элементы имеют расширенный набор свойств, позволяющий в системе реализовать одну функцию, а в другой системе - другую, то есть систем несколько, а элемент один и тот же, но многофункциональный и подвижный.

Отсюда следует, что несколько систем могут быть функционально связаны не только операциями, выполняемыми совместно их элементами, но и через элементы, принадлежащими сразу нескольким системам.

Наши рекомендации