Решение уравнения относительно заданной переменной (Solve)

Если задано некоторое выражение F (x) и отмечена переменная х, то операция Solve (Решить) возвращает символьные значения указанной переменной х, при которых F (x) ==0. Это очень удобно для решения алгебраических уравнений, например квадратных и кубических, или для вычисления корней полинома. Рис. 8. 13 содержит примеры решения квадратного уравнения и нахождения комплексных корней полинома четвертой степени.


Рис. 8. 13 Примеры решения уравнений

Ранее отмечалось, что усложнение уравнения, например переход от квадратного уравнения к кубическому, может вызвать и существенное усложнение результата. Тогда система представляет решение в более компактном виде (но без общепринятой математической символики) и предлагает занести его в буфер обмена.

С помощью операцииPaste (Вставить) в позицииEdit (Правка) главного меню можно перенести решение в основное окно системы, но оно имеет уже тип текстового комментария, а не математического выражения, пригодного для дальнейших преобразований. Впрочем, часть его можно (опять-таки с помощью буфера обмена) ввести в формульные блоки для последующих преобразований и вычислений.

Более того, форма представления результата в таком случае отличается от принятой в системе MathCAD (например, в качестве знака деления используется косая черта, для возведения в степень — составной знак** и т. д.). Это сделано ради компактности представления результатов вычислений. Рис. 8. 14 показывает результат решения кубического уравнения в символьном виде.

Рис. 8. 14 Решение кубического уравнения в символьном виде


Последний пример наглядно иллюстрирует проблему "разбухания" результатов. Если при решении квадратного уравнения получены простые выражения, известные даже школьникам (рис. 8. 13 — первый пример), то при увеличении порядка уравнения всего на единицу результат оказался представленным весьма громоздкими и малопригодными для анализа формулами. Хорошо еще, что существующими!

В случаях, подобных приведенному, пользователю надо реально оценить свои силы в упрощении решения. Это придется сделать вручную. При технических расчетах специалист нередко знает, какие из параметров решения несущественны и может отбросить их. Однако для строгих математических расчетов это не всегда возможно, поэтому даже громоздкий результат может быть весьма полезным с познавательной точки зрения.

Подстановка для заданной переменной (Substitute)

ОперацияSubstitute (Подстановка) возвращает новое выражение, полученное путем подстановки на место указанной переменной некоторого другого выражения. Последнее должно быть подготовлено и скопировано (операциямиCut илиCopy) в буфер обмена. Наряду с получением результата в символьном виде эта команда позволяет найти и числовые значения функции некоторой переменной путем замены ее на числовое значение. На рис. 8. 15 представлены примеры операций с подстановкой.

Рис. 8. 15 Примеры операций с подстановкой


Подстановки и замены переменных довольно часто встречаются в математических расчетах, что делает эту операцию весьма полезной. Кроме того, она дает возможность перейти от символьного представления результата к числовому.

8. 13. Разложение в ряд Тейлора по заданной переменной (Expand to Series...)

ОперацияExpand to Series... (Разложить в ряд) возвращает разложение в ряд Тейлора выражения относительно выделенной переменной с заданным по запросу числом членов ряда n (число определяется по степеням ряда). По умолчанию задано п=6. Разложение возможно для функции заданной переменной. В разложении указывается остаточная погрешность разложения. На рис. 8. 16 представлено применение этой операции для разложения функции sin (x)/x. Минимальная погрешность получается при малых х (см. графическое представление функции и ее ряда).

Символьные операции нередко можно комбинировать для решения сложных задач. Рис. 8. 17 показываег интересное решение одной из таких задач — вычисление определенного интеграла, который не берется в замкнутой форме.

Рис. 8. 16 Пример на разложение функции в ряд Тейлора


Рис. 8. 17 Взятие определенного интеграла в символьной форме с заменой подынтегральной функции ее разложением


Если пользователя (например, инженера) интересует просто числовое значение интеграла, надо лишь поставить после интеграла знак вывода = и значение интеграла будет вычислено адаптивным численным методом Симп-сона. Однако вычислить такой интеграл с помощью операцииSimplify(Упростить) не удастся после долгих попыток система сообщит, что интеграл в замкнутой форме не берется.

Прием, который иллюстрирует рис. 8. 17, заключается в замене подынтегральной функции ее разложением в ряд Тейлора. Вначале получим такое разложение с избытком — для 10 членов ряда (однако учтенных нечетных членов тут нет, такова специфика функции). Далее, выделив четыре первых реальных члена и используя операцииCopy (Копировать) иPaste (Вставить) в позицииEdit (Правка) главного меню, поместим это разложение на место шаблона подынтегральной функции. Теперь проблем с вычислением интеграла операциейSimplify не будет

Интеграл получен в форме числа е=ехр (1), помноженного на дробный множитель, представленный в рациональной форме (отношения целых чисел) Это обстоятельство, возможно, бесполезное для рядового пользователя, наверняка будет весьма положительно воспринято математиком, поскольку здесь напрашиваются определенные аналитические выводы (которых нельзя сделать при вычислении интеграла численными методами)

Наши рекомендации