Изучение дифракции света в сходящихся лучах (дифракция френеля)
Цель работы: изучение дифракционных явлений при распространении сферической световой волны через круглое отверстие в непрозрачном экране.
Приборы и принадлежности: источник света – газовый (He-Ne) лазер, оптическая скамья с сантиметровой шкалой, собирающая линза, диафрагма, отражающий экран, фотоэлемент, микроамперметр.
Введение
При распространении света в среде с резкими неоднородностями наблюдается явление дифракции, то есть нарушение законов геометрической оптики, приводящее к отклонению распространения света от прямолинейного вблизи краев непрозрачных тел. Данное явление обусловлено волновой природой света. В случае, когда дифракция наблюдается в сходящихся (непараллельных) лучах, говорят о дифракции Френеля.
Рис. 1
Рассмотрим дифракцию Френеля на примере распространения сферической световой волны через круглое отверстие в непрозрачном экране. Для того, чтобы определить действие световой волны в какой-либо точке Р на линии ОО' (рис. 1), воспользуемся методом зон Френеля. Разобьем открытую волновую поверхность на кольцевые зоны Френеля, построенные таким образом, чтобы расстояние от краев соседних зон до точки Р отличалось на половину длины волны λ/2.
Рис. 2
Определим площади и радиусы зон Френеля. Согласно рис. 2, имеет место соотношение
, (1)
где rm – радиус зоны Френеля под номером m;
R – радиус волновой поверхности;
hm – высота сферического сегмента, выделяемого внешней границей m-й зоны;
b – расстояние от волновой поверхности до точки наблюдения P;
– расстояние от точки P до границы зоны Френеля под номером m.
Ввиду малости λ при небольших значениях m можно пренебречь слагаемым, содержащим λ2. С учетом этого приближения из формулы (1) следует
(2)
Так как площадь сферического сегмента Sm = 2pR hm, выражение для площади m-й зоны имеет вид
. (3)
Следовательно, площади зон Френеля примерно одинаковы (ΔSm не зависит от m).
Полагая hm << R, из соотношения (1) получим для радиуса зоны Френеля под номером m выражения rm =2Rhm, или с учетом (2),
. (4)
Очевидно, если rm является одновременно радиусом r рассматриваемого отверстия в экране, то оно открывает часть волнового фронта, на котором умещается число зон Френеля, равное
. (5)
Интенсивность света в точке наблюдения Р зависит от числа m открытых зон Френеля. Колебания, возбуждаемые в точке Р вторичными источниками от аналогичных участков соседних зон, будут находиться в противофазе, то есть ослаблять друг друга (по определению расстояния до указанных участков от точки Р отличаются на λ/2). Следовательно, если отверстие открывает четное число зон Френеля, в точке Р наблюдается минимум освещенности, нечетное – максимум.
Амплитуды колебаний, возбуждаемых зонами в точке Р, в соответствии с принципом Гюйгенса-Френеля образуют монотонно убывающую последовательность
A1 > А2 > . . . > Am-1 >Am > Am+1 > . . .
Это связано с тем, что площади зон примерно одинаковы, а расстояния bm от зоны до точки наблюдения Р увеличиваются с ростом m. Кроме того, от центральной зоны к периферическим увеличивается угол j между нормалью к элементам зоны и направлением на точку Р (см. рис. 1). Амплитуда результирующего колебания равна алгебраической сумме амплитуд:
A = A1- A1+ A3- A4+ . . . (6)
Здесь знак минус учитывает, что фазы колебаний, возбуждаемые соседними зонами, отличаются на p.
Преобразуем выражение (6) к виду
(7)
Вследствие монотонного убывания Аm можно приближенно считать, что . Тогда выражения в скобках будут равны нулю, и амплитуда колебания в точке Р, возбуждаемого полностью открытым волновым фронтом, окажется равной А = A1/2. Если отверстие открывает только одну центральную зону Френеля, то амплитуда колебания равна А = А1, то есть в два раза больше. Соответственно интенсивность I в точке Р (которая пропорциональна квадрату амплитуды) при одной открытой зоне в четыре раза больше, чем при полностью открытом волновом фронте так как I ~ А2 [2].
Как следует из соотношения (5), при фиксированных длине волны излучения λ, размерах отверстия r и расстоянии между источником света S и точкой наблюдения Р освещенность в точке Р будет зависеть от положения экрана – расстояний R и b.
Описание установки
Схема установки приведена на рис. 3. На одном конце оптической скамьи располагается источник света – (He-Ne) лазер 1, дающий монохроматическое излучение с длиной волны λ = 0,628 мкм (рис. 3). Луч лазера с помощью собирающей линзы 2 фокусируется в точку S и далее распространяется в виде сферической волны. На некотором расстоянии от точки S располагается рейтер 3 с ирисовой диафрагмой так, что ее центр совпадает с оптической осью установки.
Рис. 3
Диафрагма представляет собой круглое отверстие переменного диаметра. Диаметр отверстия регулируется поворотом рычага диафрагмы. На другом конце оптической скамьи помещается экран 4 для наблюдения дифракционной картины и фотоэлемент 5, предназначенный для измерения освещенности. Сила тока в цепи фотоэлемента пропорциональна интенсивности света, и может быть измерена с помощью микроамперметра 6 (mA).
Для измерения расстояния между диафрагмой и точечным источником S используется сантиметровая шкала оптической скамьи, начало отсчета, которой совпадает с положением источника сферической волны.
Порядок выполнения работы
Задание 1. Определение отношения интенсивностей света в точке Р
1.1. Включить блок питания лазера. После появления генерации излучения установить номинальное значение тока накачки (указано на приборе).
1.2. Проверить юстировку оптической схемы: центр отверстия диафрагмы должен совпадать с осью симметрии расходящейся сферической волны.
ВНИМАНИЕ! Устранение неточностей юстировки выполняется только дежурным лаборантом.
1.3. Перемещая экран 4 вдоль направляющего рельса, установить его на пути оптического излучения.
1.4. Поместить рейтер с диафрагмой 3 на одинаковом расстоянии L от точечного источника света S и экрана. В этом случае R = b = L и, согласно формуле (5), имеет место равенство
= (8)
1.5. Медленно вращая кольцо диафрагмы, изменять величину отверстия и наблюдать на экране за изменениями дифракционной картины. По виду дифракционной картины (рис. 4) [2] определить, в каком случае в отверстии укладываются ровно одна зона Френеля, две и т. д. (K = 1; K = 2; ...).
Рис. 4
Таблица 1
Число открытых зон Френеля | Величина фототока, мкА | Отношение интенсивностей света. |
m = 1 | i1 = | = = |
m >> 1 | i2 = |
1.6. Поворотом кольца диафрагмы установить размер отверстия, при котором на экране наблюдается дифракционная картина, соответствующая одной открытой зоне Френеля (яркая точка).
1.7. Установить рейтер с фотоприемником 5 так, чтобы поток света попадал на фотоэлемент. Включить микроамперметр, установив переключатель диапазонов в положение μA.
Для более точной юстировки оптической схемы слегка повернуть кольцо диафрагмы вправо-влево, добившись максимального значения фототока на экране микроамперметра. Записать полученное значение фототока i1 в таблицу 1.
Убрать рейтер с диафрагмой, полностью открыв волновой фронт. Записать полученное при этом значение фототока i2в таблицу 1 и найти отношение i1/i2. Сравнить его с теоретическим, считая, что значение фототока пропорционально интенсивности света I в точке Р.
Выключить микроамперметр, вернуть в исходное положение экран и рейтер с диафрагмой.
Задание 2. Экспериментальная проверка формулы (5) для числа m зон Френеля, открываемых отверстием радиуса r
2.1. Не меняя размера отверстия диафрагмы, медленно перемещать диафрагму 3 в сторону точечного источника света S и наблюдать за изменением дифракционной картины. По виду дифракционной картины (см. рис. 4) определить расстояния a между точечным источником S и диафрагмой, при которых в отверстии укладываются ровно две, три и четыре зоны Френеля. Расстояния R измеряются линейкой и заносят в таблицу 2.
2.2. Рассчитать указанные расстояния a теоретически по формуле
, (9)
которая следует из (5), где вместо r2/λвзята величина L/2 (смотри соотношение (8) при m = 1), а расстояние b = 2L - R.
Полученные значения занести в таблицу 2 и сравнить с экспериментальными значениями.
Таблица 2.
Число открытых зон Френеля, m | Расстояние a, см | |
Экспериментальное | Теоретическое | |
2.3. Сделайте заключение по результатам работы.
Контрольные задания
1. Что называется дифракцией света?
2. В чем состоит сущность метода зон Френеля?
3. Выведите формулы для определения радиусов и площадей зон Френеля.
4. Зависит ли площадь зон Френеля от номера зоны?
5. Как зависит интенсивность света в точке P от числа открытых зон Френеля?
6. Как меняется дифракционная картина, если при данных r и R увеличивать расстояние от отверстия до экрана?
7. Каково соотношение между интенсивностями света в точке P в случаях, когда отверстие открывает одну зону Френеля и при полностью открытом волновом фронте?
Список литературы
1. Савельев И.В. Курс физики. М.: Наука, 1989.-Т.3.
2. Яворский Б.М., Детлаф А.А. Курс физики. – М.: Изд-во «Академия», 2003. – 720 с.
3. Ландсберг Г.С. Оптика. Учебное пособие: Для вузов. – 6-е изд., стереотип. – М.: Физматлит, 2003. – 848 с.
Работа 303
Изучение явления дифракции света в параллельных лучах (дифракция Фраунгофера)
Цель работы: изучение дифракции света при падении плоской когерентной монохроматической волны на щель в непрозрачном экране и нить; использование дифракционных явлений для определения длины волны света и неконтактного измерения толщины нити.
Приборы и принадлежности: источник света газовый (He-Ne) лазер, щель регулируемой ширины, нить, матовый экран с горизонтальной миллиметровой шкалой, линейка.
Рис. 1.
Рассмотрим дифракцию света (определение явления дифракции см. [2] при падении плоской когерентной монохроматической волны на длинную щель в непрозрачном экране (рис. 1). Пусть свет падает на щель нормально к ее поверхности, так что колебания в плоскости щели совершаются в одной фазе. Для того, чтобы наблюдать дифракцию Фраунгофера, точку наблюдения Р необходимо расположить на достаточно большом расстоянии, где лучи, идущие от краев щели в точку Р, будут практически параллельными. Это условие легко реализовать, поместив за щель собирающую линзу так, чтобы точка наблюдения Р находилась в фокальной плоскости линзы (линза собирает в фокальной плоскости в одной точке параллельные лучи).
Решим задачу о дифракции Фраунгофера на щели, используя метод графического сложения амплитуд. Для этого разобьем открытую часть волновой поверхности на узкие полоски одинаковой ширины а0 параллельные краям щели. Колебания, возбуждаемые каждой такой плоскостью в точке наблюдения Р, имеют одинаковую амплитуду А0 и отстают по фазе от предыдущего колебания на величину
, (1)
где k = 2p/l – волновое число;
λ – длина волны;
Dr0 = а0sinj – разность хода лучей, приходящих в точку Р от соседних полосок;
j – угол дифракции, определяющей направление на точку P.
Соответственно разность фаз между лучами, идущими в точку Р от краев щели, будет равна
, (2)
где а – ширина щели.
При выводе соотношений (1) и (2) учитывалось, что линза не вносит дополнительной разности хода лучей. Для определения результирующей амплитуды колебания удобно использовать векторные диаграммы. С этой целью амплитуде колебания, возбуждаемого m-й полоской в точке Р. ставится в соответствие вектор Аm, модуль которого равен A0, а направление задается таким образом, чтобы угол между векторами Ат и Ат-1 отличался на y0. Векторная диаграмма (рис. 2.) иллюстрирует сложение векторов Аm и позволяет найти результирующий вектор, модуль которого равен амплитуде A результирующего колебания в точке Р. При j = 0 разность фаз y0 = y = 0.
Если y = p, колебания от краев щели находятся в противофазе. Соответственно векторы Аm располагаются вдоль полуокружности (см. рис. 2.) длиной L. Результирующая амплитуда при этом оказывается равной диаметру полуокружности и может быть найдена из равенства
, откуда .
Рис. 2.
В случае y = 2p, (рис. 2.) векторы Аm располагаются вдоль окружности длиной L. Результирующая амплитуда равна нулю – получается первый минимум. Первый максимум получается при y = 3p,. Найдем его амплитуду.
,
следовательно:
.
Продолжая аналогичные построения, можно прийти к выводу, что дифракционная картина представляет собой чередование максимумов и минимумов интенсивности света, причем интенсивность n-го максимума ослабевает от центра дифракционной картины к её краям в следующем соотношении [3]:
и т. д.
Условие образования n-го минимума дифракционной картины Фраунгофера может быть записано в виде:
y = ±2np,
где n = 1, 2, 3, ….., или, с учетом выражения (2),
аsinj = ±nl.(3)
Как следует из рис. 1,
,
где хn – координата n-го минимума в плоскости наблюдения,
f – фокусное расстояние линзы.
При условии f >> хn
,
следовательно, имеет место равенство
. (4)
При переходе от n-го минимума к (n + 1-му) координата x точки Р изменяется на величину
. (5)
Расстояние ∆x, таким образом, определяет ширину дифракционной полосы. Зная Dx, f и a, по формуле (5) можно определить длину волны света l, а при известных l, f и ∆x – ширину щели a (или нити) [3].
Описание установки
Рис. 3.
В качестве источника когерентного монохроматического света используется газовый (He-Ne) лазер 1 (рис. 2). На пути лазерного луча устанавливаются рейтеры с щелевой диафрагмой 2 или нитью 3, которые могут перемещаться вдоль направляющего рельса. Ширина щели регулируется микрометрическим винтом с точностью до 0,01 мм. Дифракционная картина наблюдается на экране 5, расположенном во фронтальной плоскости линзы 4. Экран снабжен подвижной риской и миллиметровой шкалой, предназначенными для измерения ширины дифракционных полос.
Порядок выполнения работы