Геометрический синтез зубчатого механизма.

Одним из основных достоинств зубчатого зацепления механизмов является их компактность при передаче большой мощности. Для уменьшения геометрических размеров зубчатых колес и механизма в целом используют зубчатые колеса с минимальным числом зубьев. Однако при изготовлении зубчатых колес с числом зубьев меньше 17 происходит подрез эвольвентной части зуба. Во избежания подрезания профиля зуба режущий инструмент при изготовлении зубчатых колес отодвигается от заготовки (положительное смещение). Изготовленные таким образом зубчатые колеса со смещением имеют большую прочность и устойчивость к износу, но меньший коэффициент перекрытия.

Величина смещения инструмента «а» определяется из соотношения

a=xm ,

где х- коэффициент смещения,

m- модуль зубчатого колеса.

Правильно выбранный коэффициент смещения обеспечивает получение необходимых свойств и геометрических параметров зубчатой передачи. В связи с этим при выборе коэффициентов смещения необходимо пользоваться рекомендациями, по проектированию зубчатых передач с заданными свойствами.

Так, например, для силовых передач общего назначения при выборе коэффициентов смещения можно пользоваться рекомендациями, приведенными в таблице 2.

Таблица 2.

Z1 и Z2 Х1 Х2
Z1,2≥30
Z1=14-20 Z2≥50 0,3 -0,3
Z1=10÷30 Z2≤30 0,5 0,5
Z1= 10…30 Z2≥ 32 0,5
Z1=5…9 Z2≤ 30 Х1=0,03(30-z1) Х2=0,03(30-z2)

В специальной литературе имеются рекомендации по выбору коэффициентов смещения при проектировании зубчатых передач с различными свойствами [ 2 ].

Выбор коэффициентов смещения можно осуществить также по так называемым блокирующим контурам [ 3 ].

После выбора коэффициентов смещения х1 и х2 при заданных числах зубьев z1 и z2 и модуля зацепления m определяем основные размеры зубчатых колес и качественные характеристики зацепления.

Коэффициент суммы смещений

Х12

Угол зацепления αw

inv αw=inv α+2((x1+x2)/z1+z2)tg α

где α=20º

угол αw находят по таблицам эвольвентной функции

Диаметры делительных окружностей

d1=mz1

d2=mz2

Диаметры основных окружностей

dв1=d1cosα

dв2=d2cosα

Делительное межосевое расстояние

a=(m(z1+z2))/2

Межосевое расстояние передачи со смещением

aw=a(cosα)/ cosαw

коэффициент воспринимаемого смещения

у=(аW-a)/m

Коэффициент уравнительного смещения

∆у=х

Радиусы начальных окружностей

rw1=r1(cosα)/ cosαw

rw2=r2(cosα)/ cosαw

Контрольная проверка

aw=rw1+rw2

Радиусы вершин зубьев

ra1=m((z1/2)+ha*+x1-∆y)

ra2=m((z2/2)+ha*+x2-∆y)

Радиусы окружностей впадин зубьев

rf1=m((z1/2)-ha*+x1-с*)

rf2=m((z2/2)-ha*+x2-с*)

Высота зуба

h=ra1-rf1

Толщина зубьев по делительной окружности

S1=m((π/2)+2x1tgα)

S2=m((π/2)+2x2tgα)

Угол профиля точки по окружности вершин

αa1=arccos(rв1/ra1)

αa2=arccos(rв2/ra2)

Толщина зубьев по окружности вершин

Sa1=m(cosα/cosαw)[(π/2)+x1tgα-z1(invαa1-invα)

Sa2=m(cosα/cosαw)[(π/2)+x2tgα-z2(invαa2-invα)

Толщина зубьев по окружности вершин должна быть больше или равна 0,4m, коэффициенты высоты головки зуба геометрический синтез зубчатого механизма. - student2.ru , коэффициент радиального зазора геометрический синтез зубчатого механизма. - student2.ru
Коэффициент торцового перекрытия

εα=(z1/2π)(tgαa1-tgα)+(z2/2π) геометрический синтез зубчатого механизма. - student2.ru

Допустимые значения коэффициента торцового перекрытия

εα≥1,2

На основании выполненных расчетов вычерчивается зацепление 2х зубчатых колес с определением активной линии зацепления и активной части профилей зубьев(рис.1)

На одном из зубчатых колес вычерчивается станочное зацепление зубчатой рейки и нарезаемого колеса с указанием размеров рейки и величины смещения.

геометрический синтез зубчатого механизма. - student2.ru

геометрический синтез зубчатого механизма. - student2.ru

Литература

Теория механизмов и механика машин, под ред. К.В.Фролова.

1.

М.Наука 2004.

2. С.А. Попов, Г.А.Тимофеев Курсовое проектирование по теории механизмов и машин. М .1999.

3. Щепетильников В.А., Солодилов В.Я.. Геометрический синтез зубчатых колес внешнего зацепления со смещением. М.2001.

Наши рекомендации