Устанавливающаяся в подкритическом реакторе плотность нейтронов

Эффективный коэффициент размножения в подкритическом реакторе - величина, меньшая единицы. Это означает, что как только реактор стал подкритическим (получил отрицательную реактивность), плотность нейтронов в нём от поколения к поколению неуклонно уменьшается, асимптотически приближаясь к нулю. Но если в реакторе есть независимый источник нейтронов (допустим для простоты - источник постоянной удельной мощностью в s нейтр./см3 с), то кажется очевидным, что величина нейтронной плотности не должна снижаться до нуля, поскольку этот постоянно функционирующий источник не даст ей упасть до нуля. Что же можно ожидать в этом случае? - Ответ очевиден: когда скорость спада плотности нейтронов за счёт подкритичности реактора сравняется со скоростью прибыли плотности нейтронов от источника, падение плотности нейтронов в реакторе должно прекратиться, и величина плотности нейтронов в реакторе должна стабилизироваться на некотором (но не нулевом) уровне. Эту величину средней плотности нейтронов в подкритическом реакторе, которая устанавливается в нём с течением времени, условимся называть устанавливающейся подкритической плотностью

Применительно к подкритическому реактору с источником нейтронов элементарное уравнение кинетики реактора имеет вид:

Устанавливающаяся в подкритическом реакторе плотность нейтронов - student2.ru (13.2)

отличаясь от ранее использовавшегося элементарного уравнения кинетики только включённым в правую часть положительным слагаемым - скоростью прибыли нейтронов от источника s, по смыслу представляющей собой величину удельной мощности источника нейтронов.

В подкритическом реакторе величина избыточного коэффициента размножения dkэ отрицательна, что при общей форме записи элементарного уравнения кинетики совершенно незаметно. Чтобы с первого взгляда на уравнение было понятно, что речь идёт именно о подкритическом реакторе, пустимся на маленькую хитрость: положительную величину недостатка величины эффективного коэффициента до единицы в подкритическом реакторе обозначим через dkп и назовём степенью подкритичности реактора:

dkп = 1 - kэ = - dkэ (13.3)

С учётом (13.3) уравнение (13.2) будет иметь вид:

Устанавливающаяся в подкритическом реакторе плотность нейтронов - student2.ru (13.4)

Если вынести сомножитель перед n(t) в правой части за скобки, то:

Устанавливающаяся в подкритическом реакторе плотность нейтронов - student2.ru (13.5)

Когда величина плотности нейтронов в подкритическом реакторе устанавливается постоянной (то есть n(t) = idem = nу), величина производной dn/dt = 0, и если подставить нулевое её значение в левую часть (13.5), получаем выражение:

Устанавливающаяся в подкритическом реакторе плотность нейтронов - student2.ru откуда следует: Устанавливающаяся в подкритическом реакторе плотность нейтронов - student2.ru (13.6)

Полученная формула для устанавливающейся подкритической плотности нейтронов подтверждает первоначальные предположения:

а) Величина устанавливающейся плотности нейтронов в подкритическом реакторе тем больше, чем больше величина мощности независимого источника нейтронов.

б) Величина устанавливающейся плотности нейтронов в подкритическом реакторе будет тем большей, чем больше величина среднего времени жизни поколения нейтронов в реакторе ( l ).

в) Величина устанавливающейся плотности нейтронов в подкритическом реакторе будет тем большей, чем меньше величина степени подкритичности реактора.

В числителе выражения (13.6) стоит величина произведения sl, имеющая размерность плотности нейтронов (нейтр./см3) и смысл устанавливающейся плотности нейтронов при величине степени подкритичности dkп = 1. Эту величину называют начальной устанавливающейся плотностью нейтронов в реакторе при данной мощности подкритического источника s, то есть

nу0 = sl (13.7)

Смысл такого названия можно проиллюстрировать с помощью графика (рис.13.1) зависимости величины устанавливающейся плотности нейтронов в реакторе от величины степени подкритичности dkп (или величины эффективного коэффициента размножения kэ) при различных величинах мощности подкритического источника нейтронов.

 
  Устанавливающаяся в подкритическом реакторе плотность нейтронов - student2.ru

nу nу/nуо=ПКУ

при s3 > s2

при s2 > s1

nу3

nу2 1

nу1 при s1

0 kэ 0 kэ

1 1

dkэ 1 0 dkэ 1 0

Рис. 13.1. Зависимость устанавливающейся подкритической плотности нейтронов от величины степени подкритичности реактора (или эффективного коэффициента размножения) при трёх различных величинах мощности независимого источника нейтронов, и та же зависимость в безразмерном виде.

Число, показывающее, во сколько раз величина устанавливающейся в реакторе плотности нейтронов при данной степени подкритичности больше величины начальной подкритической плотности нейтронов при рассматриваемой мощности источника нейтронов, называется подкритическим коэффициентом умножения (ПКУ):

Устанавливающаяся в подкритическом реакторе плотность нейтронов - student2.ru (13.8)

Введение величины ПКУ практически удобно тем, что она не зависит от величины мощности источника s и среднего времени жизни поколения нейтронов l, и поэтому безразмерная зависимость устанавливающейся плотности нейтронов от степени подкритичности является общей для всех реакторов (рис.13.1). И смысл самой величины ПКУ прост: это величина, обратная степени подкритичности реактора.

Итак, самое главное, что следует из графиков рис.13.1, - возрастающий характер зависимости устанавливающейся плотности нейтронов в подкритическом реакторе при уменьшении степени подкритичности (то есть при приближении реактора к критическому состоянию из подкритического).

Из вида этой зависимости становится понятной опасность процедуры пуска: если мы приближаемся к критическому состоянию одинаковыми по величине ступенями изменения степени подкритичности, с каждой последующей ступенькой уменьшения dkп разница устанавливающихся значений плотности нейтронов возрастает всё в большей и большей степени, и значение устанавливающейся плотности нейтронов устремляется к очень большим величинам.

В соответствии с рассматриваемой простейшей моделью кинетики подкритического реактора (элементарной модели первого, одногруппового, приближения), в которой нейтроны не делятся на мгновенные и запаздывающие, а рассматриваются как нейтроны с одинаковым временем жизни, величина устанавливающейся подкритической плотности нейтронов при dkп ® 0 теоретически устремляется к бесконечности. В реальном реакторе, где есть мгновенные и запаздывающие нейтроны, величина устанавливающейся плотности нейтронов при достижении реактором критического состояния становится величиной большой, но конечной. То есть эта несуразица с бесконечно большой величиной nу при dkп = 0 - это просто одна из издержек модели первого приближения.

Другая сторона опасности процедуры пуска может быть связана с тем, что при ограниченной чувствительности штатной пусковой аппаратуры СУЗ начальную стадию пуска приходится проводить вслепую, то есть поднимать органы компенсации запаса реактивности в условиях, когда измерители нейтронного потока ещё не чувствуют малую величину подкритической плотности потока нейтронов (а потому ещё ничего не показывают).

Дело в том, что штатные детекторы нейтронов (ионизационные камеры и датчики прямого заряда) в энергетическом реакторе должны быть рассчитаны на большие величины плотностей нейтронов, свойственные реальным режимам работы реактора на мощности, и при этом не должны в результате длительной работы в нейтронном потоке заметным образом изменять свои характеристики. Именно поэтому в энергетических реакторах и используются в качестве штатных детекторов ионизационные камеры, являющиеся довольно грубыми приборами. Использование более чувствительных камер деления позволяет зафиксировать нейтронный поток в процессе пуска реактора значительно раньше, то есть при гораздо более низких значениях, но они не годятся для длительной работы в предусмотренных режимах работы реактора, так как покрытия их внутренних поверхностей тонким слоем высокообогащённого UO2 или PuO2 в больших потоках нейтронов довольно быстро выгорают, из-за чего камеры деления изменяют свои характеристики и поэтому дают искажённые показания величин плотности потока нейтронов.

Частичная “слепота” пуска технически преодолима двумя путями:

n использованием при пуске нештатной высокочувствительной аппаратуры для регистрации нейтронов, по крайней мере, до тех пор, пока штатная аппаратура не начнёт уверенно фиксировать изменения плотности нейтронов, после чего высокочувствительные нештатные детекторы нейтронов могут быть удалены;

n использованием в процессе пуска достаточно мощных независимых источников нейтронов, опускаемых в активную зону перед пуском и позволяющим поднять начальную величину подкритической плотности нейтронов в реакторе до уровня, уверенно регистрируемого штатной пусковой аппаратурой СУЗ, или, по крайней мере, существенно уменьшить “слепой” диапазон степеней подкритичности при пуске.

Нештатная высокочувствительная пусковая аппаратура, естественно, требует места для своего размещения. Поэтому в транспортных реакторных установках, где затеснённость аппаратных выгородок над реакторами не позволяет разместить нештатную пусковую аппаратуру, пользуются вторым из упомянутых методов повышения безопасности пуска, В условиях же энергоблока АЭС, где вопрос размещения нештатной пусковой аппаратуры не представляет серьёзной проблемы, при физических пусках реакторов используется первый метод.

Наши рекомендации