Краткие теоретические сведения

Теплоемкостью какого-либо тела Ст называется физическая величина,

численно равная количеству теплоты, которое нужно сообщить телу, чтобы повысить его температуру на один градус:

Ст = краткие теоретические сведения - student2.ru

Теплоемкость единицы массы вещества называется удельной теплоемкостью и обозначается Суд.

Теплоемкость моля вещества называется молярной теплоемкостью и обозначается С.

Удельная и молярная теплоемкости связаны между собой соотношением:

Для газов удельная теплоемкость (а также молярная) существенно зависит краткие теоретические сведения - student2.ru от условий, при которых производится нагревание газа. Если нагревание происходит при постоянном давлении, то все подводимое количество теплоты идет на увеличение внутренней энергии газа и работу по расширению газа. При нагревании газа при постоянном объеме работа по расширению газа не совершается и поэтому требуется меньшее количество теплоты. Поэтому для газов следует различать две удельные (а значит и молярные) теплоемкости –

при постоянном давлении Ср и при постоянном объеме Су.

Молярная теплоемкость газа при постоянном объеме газа равна:

краткие теоретические сведения - student2.ru

где i-число степеней свободы молекул газа,

R-универсальная газовая постоянная.

Молярная теплоемкость газа при постоянном давлении равна:

Ср.= краткие теоретические сведения - student2.ru

Отношение молярных теплоемкостей Ср/ Су. Обозначается γ и равно:

краткие теоретические сведения - student2.ru

Из формулы видно, что γ зависит только от числа степеней свободы молекул газа. Напомним, что числом степеней свободы называется число независимых координат определяющих положение тела в пространстве. Для одноатомной молекулы число степеней свободы равно 3, для двухатомной – 5, для трехатомной молекулы – 6.

Отношение теплоемкости газа γ является важной характеристикой. Оно входит в уравнение Пуассона, описывающее адиабатические процессы.

Адиабатическими процессами называются такие процессы, при которых не происходит теплообмена газа, с окружающей средой. Очень быстро протекающие процессы, при которых не происходит теплообмена газа с окружающей его средой являются адиабатическими. По понятным соображениям, очень быстро протекающие процессы сжатия или расширения газа являются адиабатическими. Адиабатические расширения или сжатия газа сопровождаются изменением его внутренней энергии, а следовательно, и температуры.

При адиабатическом сжатии температура газа повышается, а при адиабатическом расширении-понижается.

Уравнение Пуассона можно записать через любую пару переменных: pV, T, PТ: краткие теоретические сведения - student2.ru

TV краткие теоретические сведения - student2.ru

краткие теоретические сведения - student2.ru

II. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Лабораторная установка (рис.1) состоит из стеклянного баллона Б, закрытого пробкой. В пробку вставлен стеклянный четверник, с помощью которого баллон соединен с манометром М, насосом Н и атмосферой (кран К). В шланг, соединяющий баллон с насосом, вставлен кран П, служащий для прекращения выхода воздуха после накачивания его в баллон.

краткие теоретические сведения - student2.ru

Рис.1

Рассмотрим ход опыта Клемана и Дезорма. Открыв кран П и закрыв кран К, насосом накачивают воздух в баллон, при этом воздух сжимается, а его температура и давление повышаются. Через некоторое время, благодаря теплопроводности стен баллона, воздух внутри него охладится до температуры окружающей среды, при этом в манометре установится некоторая разность уровней жидкости в правом и левом коленах. Обозначим разность уровней через разность h1. Она показывает, на сколько давление внутри баллона больше атмосферного.

Если обозначить атмосферное давление P0, то давление внутри баллон будет равно P0+h1 (конечно P0 и h1 должны быть выражены в одних и тех же единицах).

Значит, первое состояние газа можно описать следующими параметрами:

P0+h1 – давление воздуха внутри баллона,

V1 – объем некоторой массы воздуха внутри баллона,

Т1 – температура воздуха внутри баллона, равная температуре окружающей среды.

Откроем кран К на время, пока давление в баллоне не станет атмосферным (P0), при этом часть воздуха выйдет из баллона и в самом баллоне воздух расширится. Процесс расширения воздуха происходит достаточно быстро и его можно считать адиабатическим. Следовательно, газ совершат работу по расширению за счет уменьшения его внутренней энергии, а значит его температура понижается.

Тогда второе состояние газа можно описать параметрами:

P0 – Давление воздуха, равное атмосферному давлению,

V2 – объем газа,

Т2 – температура воздуха внутри баллона, ставшая меньше чем Т1.

Через некоторое время воздух внутри баллона нагревается до температуры окружающей среды, при этом его объем не изменяется, следовательно, увеличивается давление. В манометре установится некоторая разность уровней жидкости в правом и левом коленах.

Третье состояние газа можно описать следующими параметрами:

Р.о+h2 – давление воздуха внутри баллона,

V2 – объем газа,

Т1 – температура газа.

Сравнивая первое и третье состояние газа, можно заменить, что температуры одинаковы, следовательно, можно применить закон Бойля – Мариотта: «Для данной массы газа при постоянной температуре давление газа изменяется обратно пропорционально объему»:

краткие теоретические сведения - student2.ru , (1)

Переход газа из первого во второе состояние, как уже отмечалось, произошел адиабатически; следовательно, применим закон Пуассона в виде

PVγ = const:

краткие теоретические сведения - student2.ru , (2)

краткие теоретические сведения - student2.ru Сопоставляя формулы (1) и (2), получим:

краткие теоретические сведения - student2.ru .

Прологарифмируем последнее выражение:

краткие теоретические сведения - student2.ru .

Из него найдем γ:

краткие теоретические сведения - student2.ru , (3)

Так как давление Р0, Р0 + h1, Р0 +h2 незначительно отличаются друг от друга, то в формуле (3) отношение разности логарифмов можно заменить отношением разность самих чисел Р0, Р0 + h1, Р0 +h2. Тогда получим:

краткие теоретические сведения - student2.ru . (4)

Формула (4) является расчетной для определения отношения теплоемкости.

Наши рекомендации