Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений

С каждой задачей линейного программирования тесно связана другая линейная задача, называемая двойственной; первоначальная задача называется исходной или прямой.

Связь исходной и двойственной задач заключается, в част­ности, в том, что решение одной из них может быть получено непосредственно из решения другой.

Переменные двойственной задачи yi называют объективно обусловленными оценками, или двойственными оцен­ками, или «ценами» ресурсов, или теневыми ценами.

Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.

Двойственная задача по отношению к исходной состав­ляется согласно следующим правилам:

1) целевая функция исходной задачи формули­руется на максимум, а целевая функция двойственной задачи— на минимум, при этом в задаче на максимум все неравенства в функциональных ограничениях имеют вид £, в задаче на минимум — вид ³;

2) матрица А, составленная из коэффициентов при неизвестных в сис­теме ограничений исходной задачи и аналогич­ная матрица Ат в двойственной задаче получаются друг из друга транс­понированием;

3) число переменных в двойственной задаче равно числу функциональных ограничений исходной задачи, а число ограничений в системе двойственной задачи — числу переменных в исходной задаче;

4) коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе ограничений исходной задачи, а правыми частями в ограничениях двойственной задачи — коэффициенты при неизвестных в целевой функции исходной задачи;

5) каждому ограничению одной задачи соответствует переменная другой задачи: номер переменной совпадает с номером ограничения; при этом ограничению, записан­ному в виде неравенства £, соответствует переменная, связанная условием неотрицательности. Если функцио­нальное ограничение исходной задачи является равенст­вом, то соответствующая переменная двойственнвой; задачи может принимать как положительные, так и отрицательные значения

Модель исходной (прямой) задачи в общем виде может быть записана следующим образом:

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru

Модель двойственной задачи имеет вид:

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru

Две приведенные задачи образуют пару симметричных двойственных задач. Основные утверждения о взаимно двойственных задачах содержатся в двух следующих теоремах.

Первая теорема двойственности.

Для взаимно двойственных задач имеет место один из взаимоисключающих случаев:

1. В прямой и двойственной задачах имеются оптимальные реше­ния, при этом значения целевых функций на оптимальных решениях совпадают: f(x) = g(y).

2. В прямой задаче допустимое множество не пусто, а целевая функция на этом множестве не ограниченна сверху. При этом у двойственной задачи будет пустое допустимое множество.

3. В двойственной задаче допустимое множество не пусто, а целевая функция на этом множестве не ограничена снизу. При этом у прямой задачи допустимое множество оказывается пустым.

4.Обе из рассматриваемых задач имеют пустые допустимые множества.

Экономический смысл первой теоремы двойственности следующий. План производства Х и набор оценок ресурсов У оказываются оптимальными тогда и только тогда, когда прибыль от реализации продукции, определенная, при из­вестных заранее ценах продукции равна затра­там на ресурсы по «внутренним» (определяемым только из решения задачи) ценам ресурсов yi. Для всех же других планов Х и У обеих задач прибыль от продукции всегда меньше (или равна) стоимости затраченных ресурсов:

f(X) < g(Y}, т. е. ценность всей выпущенной продукции не превосходит суммарной оценки имеющихся ресурсов. Зна­чит величина g(Y) - f(X) характеризует производственные потери в зависимости от рассматриваемой производственной программы и выбранных Оценок ресурсов.

Из первой теоремы двойственности следует, что при оп­тимальной производственной программе и векторе оценок ресурсов производственные потери равны нулю.

Вторая теорема двойственности

(теорема о дополняющей нежесткости)

Пусть X=(x1,x2,...xn) - допустимое решение прямой задачи, а Y= (y1,y2,...ym) - допустимое решение двойственной задачи. Для того чтобы они были оптимальными решениями соответственно прямой и двойственной задач необходимо и достаточно, чтобы выполнялись следующие соотношения:

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru *

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru **

Условия (*) и (**) позволяют, зная оптимальное решение одной из взаимно двойственных задач, найти оптимальное решение другой задачи.

Из второй теоремы двойственности в данном случае следуют такие требования на оптимальную производственную программу X=(X1,X2,...,Xn) и оптимальный вектор оценок Y=(Y1,Y2,...,Ym):

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru (4)

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru (5)

Условия (4) можно интерпретировать так: если оценка yi единицы ресурса i-го вида положительна, то при оптимальной производственной программе этот ресурс используется полностью, если же ресурс используется не полностью, то его оценка равна нулю. Из условия (5) следует, что если j-й вид продукции вошел в оптимальный план, то он в оптимальных оценках неубыточен, если же j-й вид продукции убыточен, то он не войдет в план, не будет вы­пускаться.

Рассмотрим еще одну теорему, выводы которой будут использованы в дальнейшем.

Теорема об оценках.

Значения переменных Yi в оптимальном решении двойственной задачи представляют собой оценки влияния свободных членов bi системы ограничений-неравенств прямой задачи на величину

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru

Решая ЗЛП симплексным методом, мы одновременно решаем двойственную ЗЛП. Переменные двойственной задачи yi называют объективно обусловленными оценками.

Рассмотрим экономическую интерпретацию двойственной задачи на примере задачи оптимального использования ресурсов.

Пример.Сформулируем экономико-математическую модель двойственной задачи к задаче о коврах.

Прямая задача:

f(x) = 3Х1 +4Х2 +3Х3 +1Х4

Ограничения по ресурсам

1 +2Х2 +2Х3 +6Х4 Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru 80

1 +8Х2 +4Х3 +3Х4 Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru 480

1 +4Х23 +8Х4 Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru 130

Х1, Х2, Х3, Х4 Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru 0

Количество неизвестных в двойственной задаче равно числу функциональных ограничений в исходной задаче. В исходной задаче три ограничения – по труду, по сырью и по оборудованию. Следовательно, в двойственной задаче – три неизвестных:

Y1 – двойственная оценка ресурса труд, или «цена» труда;

Y2 – двойственная оценка ресурса сырье, или «цена» сырья;

Y3 – двойственная оценка ресурса оборудование, или «цена» оборудования.

Целевая функция двойственной задачи формулируется на минимум. коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе ограничений исходной задачи.

g Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru = 80 ´Y1 + 480´Y2 + 130´Y3 ® min

Необходимо найти такие “цены” на ресурсы (Yi), чтобы общая стоимость используемых ресурсов была минимальной.

Ограничения. число ограничений в системе двойственной задачи равно числу переменных в исходной задаче. В исходной задаче четыре переменных, следовательно, в двойственной задаче четыре ограничения. правыми частями в ограничениях двойственной задачи являются коэффициенты при неизвестных в целевой функции исходной задачи. Левая часть ограничения определяет стоимость ресурсов, затраченных на производство единицы продукции. Каждое ограничение соответствует определенному виду продукции.

7 ´Y1 + 5´Y2 + 2´Y3 ³ 3

2 ´Y1 + 8´Y2 + 4´Y3 ³ 4

2 ´Y1 + 4´Y2 + 1´Y3 ³ 3

6 ´Y1 + 3´Y2 + 8´Y3 ³ 1

Y1 ,Y2 ,Y3 ³ 0

Задача о размещении производственных заказов

в планируемом периоде необходимо обеспечить производство 300 тыс. однородных новых изделий, которые могут выпускаться на четырех филиалах предприятия. Для освоения этого нового вида изделий выделены капитальные вложения в размере 18 млн. руб.. Разработанные для каждого филиала предприятия проекты освоения нового вида изделия характеризуются величинами удельных капитальных вложений и себестоимостью единицы продукции в соответствии с таблицей.

Необходимо найти такой вариант распределения объемов производства продукции и ка­питальных вложений по филиалам, при котором суммарная стоимость изделий будет минимальной.

Таблица

Показатель Филиал предприятия
 
Себестоимость производства изделия, руб.
Удельные капиталовложения, руб.

В результате решения получен план распределения объемов производства по филиалам предприятия

Филиал предприятия
100 тыс. штук 200 тыс. штук

Требуется:

1) Сформулировать экономико-математическую модель прямой и двойственной задачи.

2) Найти оптимальный план двойственной задачи, используя теоремы двойственности.

Решение

1) Экономико-математическая модель исходной задачи.

Xi - объем выпускаемой продукции на i-м филиале предприятия.

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru = 83X1+89X2+95X3+98X4 -> min,

Ограничения

X1+X2+X3+X4 ³ 300 (тыс. штук)

120X1+80X2+50X3+40X4 £ 18 (млн.руб.),

X1,2,3,4 ³0.

   
Y1
Y2

Экономико-математическая модель двойственной задачи.

Y1 - двойственная оценка выпускаемой продукции, которая может быть ценой изделия;

Y2 - двойственная оценка капитальных вложений, которая может быть представлена как коэффициент эффективности капитальных вложений.

g Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru =300000 Y1+18000000 Y2 -> mах

1 Y1+120Y2 £83

1 Y1+ 80Y2 £89

1 Y1+ 50Y2 £95

1 Y1+ 40Y2 £98

2) для определения оптимального плана двойственной задачи воспользуемся соотношениями второй теоремы двойственности. Если какое-либо ограничение исходной задачи выполняется как строгое неравенство, то соответствующая двойственная оценка равна нулю

( Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru ).

0+100000+200000+0 = 300000

120´0+80´100000+50´200000+4´0 = 18000000

Если какая-либо переменная исходной задачи входит в оптимальный план, то соответствующее ограничение двойственной задачи выполняется как строгое равенство

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru ).

В нашей задаче Х2=100000>0 и Х3=200000>0, поэтому второе и третье ограничения двойственной задачи обращаются в уравнения, решая которые найдем Y1и Y2 .

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru 1 Y1+ 50Y2 = 95 Y1= 105 - средняя цена изделия

1 Y1+ 80Y2 = 89 Y2 = - 0.2 - двойственная оценка капитальных вложений.

105 =95 +50´0.2 = 105

105 =89+ 80´0.2 = 105

На втором и третьем филиалах выпускать новые изделия целесообразно так как затраты на его освоение и выпуск не превышают цену изделия.

Проверим выполнение первой теоремы двойственности.

g Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru =300000 Y1+18000000 Y2 = 300000 ´105+18000000´(–0.2) = 279 000 000

Теория двойственности в задачах линейного программирования. Анализ полученных оптимальных решений - student2.ru = 83X1+89X2+95X3+98X4 =83´0+89´100000+95´200000+98´0 = 279 000 000.

Полученные оптимальные планы говорят о том, что в первом и четвертом филиалах размещать заказы по выпуску новых изделий невыгодно (Х1=0 и Х4=0), так как затраты на производство единицы изделия в этих филиалах больше цены изделия.

1 ´Y1+ 120´Y2 =83 Y1= 105 105+ 120´(-0.2) < 95 105< 95+24 = 119

1 ´Y1+ 40´Y2 = 98 Y2 = - 0.2105+ 40´(-0.2) <89 105<98+8 = 106.

Основным литературным источником являются [5,6,7], а дополнительным – [8-11, 13].

Тема 5. Методы оптимальных решений в условиях

Наши рекомендации