В частях, достаточно удаленных от места приложения сил, распределение напряжений практически зависит только от статического эквивалента этих сил, а не от способа их приложения
Таким образом, применяя принцип Сен-Венана и отвлекаясь от вопроса о местных напряжениях, имеем возможность (как в этой, так и в последующих главах курса) не интересоваться конкретными способами приложения внешних сил.
В местах резкого изменения формы и размеров поперечного сечения бруса также возникают местные напряжения. Это явление называют концентрацией напряжений,которую в этой главе учитывать не будем.
В тех случаях, когда нормальные напряжения в различных поперечных сечениях бруса неодинаковы, целесообразно показывать закон их изменения по длине бруса в виде графика — эпюры нормальных напряжений.
П ри мер2.3. Для бруса со ступенчато-переменным поперечным сечением (рис. 2.10,а) построить эпюры продольных силинормальных напряжений.
Решение. Разбиваем брус на участки, начиная от свободного гонца. Границами участков являются места приложения внешних сил и изменения размеров поперечного сечения, т. е. брус имеет пять участков. При построении только эпюрыN следовало бы разбить брус лишь на три участка.
Применяя метод сечений, определяем продольные силы в поперечных сечениях бруса и строим соответствующую эпюру (рис. 2.10,6). Построение эпюры И принципиально ничем не отличается от рассмотренного в примере 2.1, поэтому подробности этого построения опускаем.
Нормальные напряжения вычислим по формуле (2.1), подставляя значения сил в ньютонах, а площадей — в квадратных метрах.
В пределах каждого из участков напряжения постоянны, т. е. эпюра на данном участке — прямая, параллельная оси абсцисс (рис. 2.10, в). Для расчетов на прочность интерес представляют в первую очередь те сечения, в которых возникают наибольшие напряжения. Существенно, что в рассмотренном случае они не совпадают с теми сечениями, где продольные силы максимальны.
В тех случаях, когда сечение бруса по всей длине постоянно, эпюра а подобна эпюреN и отличается от нее только масштабом, поэтому, естественно, имеет смысл построение лишь одной из указанных эпюр.
17. Элементарный параллелепипед должен находиться в равновесии (он не должен вращаться вокруг оси x, проходящей через точку К) (см. рис. 6.3), поэтому суммарный момент всех сил, возникающих по граням относительно этой оси должен быть равным нулю:
В формуле условии равновесия параллельного параллелепипеда в скобки заключены соответствующие силы, выраженные через касательные и нормальные напряжения, а их плечи указаны за скобками. После элементарных упрощений этого выражения, получим закон парности касательных напряжений:
Формулировка закона парности касательных напряжений: касательные напряжения на любых двух взаимно перпендикулярных площадках, направленные по перпендикуляру к линии пересечения площадок, равны по величине, притом касательные напряжения либо сходятся к линии пересечения площадок, либо расходятся от нее.
18. Пусть в результате деформации первоначальная длина стержня l станет равной. l1. Изменение длины
называется абсолютным удлинением стержня.
Отношение абсолютного удлинения стержня к его первоначальной длине называетсяотносительным удлинением ( – эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:
При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.
Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:
.
Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона иликоэффициентом поперечной деформации, вычисляется по формуле:
Для различных материалов коэффициентПуассона изменяется в пределах . Например, для пробки , для каучука , для стали , для золота .
Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука, по имени английского физика Р. Гука (1653-1703 г.г.), установившего этот закон.
Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.
Математически эта зависимость записывается так:
σ = E ε.
Здесь Е – коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости, илимодулем упругости первого рода.
Модуль упругости, как и напряжение, выражаются в паскалях (Па).
Значения Е для различных материалов устанавливаются экспериментально-опытным путем, и их величину можно найти в соответствующих справочниках.
Так, для стали Е = (1,96.…2,16) х 105 МПа, для меди Е = (1,00...1,30) х 105 МПа и т. д.
Следует оговориться, что закон Гука справедлив лишь в определенных пределах нагружения.
Если в формулу закона Гука подставить полученные ранее значения относительного удлинения и напряжения: ε = Δl / l , σ = N / А, то можно получить следующую зависимость:
Δl = N l / (E А).
Произведение модуля упругости на площадь сечения Е×А, стоящее в знаменателе, называют жесткостью сечения при растяжении и сжатии; оно характеризует одновременно и физико-механические свойства материала бруса и геометрические размеры поперечного сечения этого бруса.
Приведенную выше формулу можно читать так: абсолютное удлинение или укорочение бруса прямо пропорционально продольной силе и длине бруса, и обратно пропорционально жесткости сечения бруса.
Выражение Е А / l называют жесткостью бруса при растяжении и сжатии.
Приведенные выше формулы закона Гука справедливы лишь для брусьев и их участков, имеющих постоянное поперечное сечение, изготовленных из одного материала и при постоянной силе. Для бруса, имеющего несколько участков, отличающихся материалом, размерами сечения, продольной силой, изменение длины всего бруса определяется, как алгебраическая сумма удлинений или укорочений отдельных участков:
Δl = Σ (Δli)