Исходные условия эксперимента

Лабораторная работа № 1

Моделирование риска инвестиционного проекта с использованием

Встроенных функций ППП MS Excel 2007

Финансовый риск- уровень финансовой потери, выражающейся либо в возможности не достичь поставленной цели; либо в неопределённости прогнозируемого результата; либо в субъективности оценки прогнозируемого результата.

Статистические критерии риска следующие.

1.Вероятность (Р) события (Е) – отношение числа К случаев благоприятных исходов, к общему числу всех возможных исходов (М):

Р (Е)= К / М

2.Размах вариации (R)– разница между максимальным и минимальным значением фактора:

R=Xmax-Xmin

Этот показатель дает очень грубую оценку риску, т.к. он является абсолютным показателем и зависит только от крайних значений ряда.

3. Дисперсия – сумма квадратов отклонений случайной величины от ее среднего значения, взвешенных на соответствующие вероятности.

к=n
Vаr(Е) = S рк к - М(Е))2 ,
к=1

где М(Е) – среднее или ожидаемое значение (математическое ожидание) дискретной случайной величины Е

4. Математическое ожидание определяется как сумма произведений ее значений на их вероятности:

к=n
М(Е)= S Хкрк
к=1

Это важнейшая характеристика случайной величины, т.к. служит центром распределения ее вероятностей. Смысл ее заключается в том, что она показывает наиболее правдоподобное значение фактора.

4. Среднее квадратическое отклонение s (Е):

Исходные условия эксперимента - student2.ru

5. Коэффициент вариации (СV):

СV= s(E)/M (E)

Одним из способовоценки финансовых рисков служит имитационное моделирование. В общем случае под имитацией понимают процесс проведения на ЭВМ экспериментов с математическими моделями сложных систем реального мира.При анализе рисков инвестиционных проектов обычно используют в качестве базы для экспериментов прогнозные данные об объемах продаж, затратах, ценах и т.п. При проведении финансового анализа часто используются модели, содержащие случайные величины, поведение которых не детерминировано управлением или принимающими решения. Стохастическая имитация известна под названием "метод Монте-Карло".

Имитационное моделирование представляет собой серию численных экспериментов, призванных получить эмпирические оценки степени влияния различных факторов (исходных величин) на некоторые зависящие от них результаты (показатели).

В общем случае проведение имитационного эксперимента можно разбить на следующие этапы:

1. установить взаимосвязи между исходными и выходными показателями в виде математического уравнения или неравенства;

2. задать законы распределения вероятностей для ключевых параметров модели;

3. провести компьютерную имитацию значений ключевых параметров модели;

4. рассчитать основные характеристики распределений исходных и выходных показателей;

5. провести анализ полученных результатов и принять решение. Результаты имитационного эксперимента могут быть дополнены статистическим анализом, а также использоваться для построения прогнозных моделей сценариев.

Имитационное моделирование рисков может быть достаточно просто реализовано в среде EXCEL.

Исходные условия эксперимента.

Фирма рассматривает инвестиционный проект по производству продукта "А". В процессе предварительного анализа экспертами были выявлены три ключевых параметра проекта и определены возможные границы их изменений (таблица 1.1). Прочие параметры проекта считаются постоянными величинами (таблица 1.2).

Таблица 1.1 - Ключевые параметры проекта по производству продукта "А"

Показатель Наихудший Наилучший Вероятный
Объем выпуска - Q
Цена за штуку - P
Переменные затраты - V

Таблица 1.2 - Неизменяемые параметры проекта по производству продукта"А"

Показатели Наиболее вероятное значение
Постоянные затраты - F
Амортизация - A
Налог на прибыль - T 60%
Норма дисконта - r 10%
Срок проекта - n
Начальные инвестиции - I0

Предположим, что используемым критерием оценки риска является чистая современная стоимость проекта NPV:

n

NPV=S ( NCFt / (1 + r)t - I0)

t=1

где:

NCFt - величина чистого потока платежей в периоде t.

По условиям примера, значения нормы дисконта r и первоначального объема инвестиций I0 известны и считаются постоянными в течение срока реализации проекта (таблица 1.2).

В целях упрощения будем полагать, что величина потока платежей NCF для любого периода t одинакова и может быть определена из следующего соотношения:

NCFt = Qt(Pt – Vt) – F – A)(1 – T) + A

Следующими этапом проведения анализа является выбор законов распределения вероятностей ключевых переменных.

По условиям примера ключевыми варьируемыми параметрами являются: переменные расходы V, объем выпуска Q и цена P. Диапазоны возможных изменений варьируемых показателей приведены в таблице 3.1. При этом будем исходить из предположения, что все ключевые переменные имеют равномерное распределение вероятностей.

Проведение имитационных экспериментов в среде ППП EXCEL можно осуществить двумя способами - с помощью встроенных функций и путем использования инструмента "Генератор случайных чисел" дополнения "Анализ данных" (Analysis ToolPack). Эти инструменты подключаются через пункты меню (Главная кнопка – Параметры - Надстройки – Пакет анализа – Перейти - ОК).

Если в ЭТ установлен режим автоматических вычислений, принятый по умолчанию, то возвращаемый функцией результат будет изменяться всякий раз, когда происходит ввод или корректировка данных. В режиме ручных вычислений пересчет всей ЭТ осуществляется только после нажатия клавиши [F9]. В нашем примере необходимо установить режим ручных вычислений (Главная кнопка – Параметры – Формулы – Параметры вычислений – Вручную).

В расчетах будут использоваться функции, описание которых приведено ниже.

Наши рекомендации