КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ
Схема замещения трёхобмоточного трансформатора представляется в ви-де трёхлучевой звезды:
|
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-4.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-5.gif)
|
|
|
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-6.gif)
Каждой обмотке соответствует ветвь семы замещения.
Сопротивления обмоток:
Zв = Rв+ jXв; Zн=Rн+jXн ; Zc=Rс+jXс .
Коэффициенты трансформации: Кв = 1; Кс = Uв / Uс ; Кн = Uв / Uн .
Расчет параметров схемы замещения трёхобмоточного трансформатора выполняется на основе справочных данных.
3. Представление нагрузок в узлах сети в схеме замещения
Способы представления нагрузки в схеме замещения
зависят от вида сети и целей расчета.
а) задание нагрузки постоянным по модулю и фазе током .
Такой способ задания нагрузок используется при моделирование режимов работы распределительных электрических сетей низкого и среднего напряже-ния (до 35кВ). Источниками информации о нагрузке в таких сетях могут быть:
1) сезонные измерения нагрузки;
2) телеизмерения нагрузок на головных участках электрических сетей;
3) доля от установленной мощности трансформаторных пунктов (ТП) др.
При любом способе получения информации она имеет, как правило большою погрешность, она неполная и поступает с запаздыванием. Существу-ют математические способы повышения качества информации.
При задании нагрузок в узлах постоянным током режим работы электри-ческой сети описывается системой линейных уравнений.
б) задание нагрузки постоянной мощностью.
![]() |
Используется при моделировании режимов питающих сетей средних и высоких классов напряжений и распределительных сетей средних классов напряжений (выше 35 кВ).
В питающих сетях постоянная мощность нагрузки задается при неизвест-ном напряжении в узле. Это означает, что в узле задан нелинейный источник тока, зависящий от напряжения в узле:
;
= var.
При моделировании режимов работы электрических сетей наиболее часто используется именно такой способ задания нагрузки. Он в большей мере соответствует реальным условиям работы нагрузки.
|
![]() |
Такое задание нагрузки используется при расчетах электромеханических переходных процессов.
г) задание нагрузки при помощи статических характеристик нагрузки по напряжению.
![]() |
Статические характеристики нагрузки (СХН) по напряжению отражают зависимость величины нагрузки от напряжения в узле.
Для каждого вида нагрузки (бытовая, промышленная, сельскохозяйствен-ная и др.) – существуют свои СХН. Они могут быть достаточно сложными. Для упрощения в практических расчетах статические характеристики нагрузки апроксимируются, как правило, полиномами второй степени:
;
,
где a, b, c – коэффициенты полинома. Различны для разных типов нагрузки;
U – текущее напряжение; Uном – номинальное напряжение;
Pно, Qно - значение нагрузки при номинальном напряжении.
Существуют типовые характеристики нагрузки для различных групп и типов потребителей.
При таком способе задания нагрузки наиболее полно отображается её свойства по сравнению с другими способами. Но это требует большого коли-чества дополнительных вычислений.
д) задание нагрузки случайным по величине током.
Используется при расчетах электрических систем с большой долей электро-тяговой нагрузки (например, электротяговая нагрузка – электрифицированный транспорт).
В этих расчетах учитывается несимметричный и несинусоидальный харак-тер нагрузки.
Лекция 4.
4. Представление генераторов электроэнергии в схемах замещения
Источниками электроэнергии в ЭЭС являются генераторы электричес-ких станций (ЭС), синхронные компенсаторы (СК), батареи статических кон-денсаторов (БСК).
|
|
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-21.gif)
|
В схемах замещения генераторные узлы могут задаваться следующим параметрами:
а) постоянной мощностью
PГ = const; QГ = const
Задание постоянной активной мощности соответствуют реальным усло-вииям роботы генератора с учетом действия системы регулирования частоты.
Задание постоянной реактивной мощности не соответствует реальным условиям роботы так как генераторы не имеют устройств регулирования реак-тивной мощности.
Неизвестными величинами при таком задании являются напряжения в узлах:
б) постоянная активная мощность и постоянный модуль напряжения
PГ = const; UГ = const ,
Переменные и неизвестные параметры - реактивная мощность QГ и угол напряжения г в этом узле.
Если QГ = var и , то такое сочетание заданных параметров соот-ветствует генераторам электростанций. Если QГ = var и
, то такое сочета-ние соответствует синхронному компенсатору (СК).
СК – источник реактивной мощности (дополнительный), предназначенный для компенсации реактивных нагрузок с целью изменения потоков реактивной мощности в сети. Это позволяет влиять на уровни напряжения в узлах и на потери активной мощности в элементах сети.
Два режима роботы СК:
а) режим перевозбуждения (генерация реактивной мощности);
б) режим недовозбуждения (потребление реактивной мощности).
Узлы, в которых установлены регулируемые источники реактивной мощ-ности являются балансирующими по реактивной мощности. С их помощью обеспечивается расчетный баланс реактивной мощности в сети.
За счет регулирования реактивной мощности в узле можно обеспечить фиксацию модуля напряжения в нём. Такие узлы называются узлами с фиксацией модуля напряжения (узлы ФМ).
Такие условия задания параметров в генераторном узле – постоянным напряжением при переменой реактивной мощности соответствуют реальным условиям роботы генератора или СК с регуляторами напряжения(АРВ), поддерживающими UГ = const.
в) задание постоянного модуля и угла напряжения
UГ = const; .
Переменные и неизвестные величины при этом – активная и реактивная мощность в узле PГ , QГ - var.
Такие узлы, в которых зафиксирован вектор напряжения называются опорными по напряжению (узлы ФВ – с фиксацией вектора).
|
;
Если задано значение U0 , то можно определить напряжения в
остальных узлах сети.
Узлы в которых переменны PГ и QГ – это узлы балансирующие по мощ-ности (БП). Их назначение - обеспечить расчетной баланс мощности в сети. Как правило, при расчетах выбирают один и тот же узел в качестве опорного по напряжению и балансирующего. Балансирующих узлов может быть в сети несколько, но не меньше одного.
Использование балансирующих узлов обусловлено спецификой нели-нейных уравнений установившегося режима. В начале расчета и в ходе его не возможно задать значения параметров, при которых обеспечивается условие баланса мощности сети (баланс мощности – равенство генерируемой и потребляемой мощности в сети в любой момент времени). Возникает расчет-ный небаланс мощности, который устраняется по мере уточнения значений параметров в ходе итерационного расчета.
Итоговая таблица: Способы задания исходных данных в узлах
Вид узла | Заданные | Неизвестные | Примечание |
Нагрузка | ![]() | ![]() ![]() | |
Генерация | PГ , QГ PГ ,UГ ![]() | ![]() ![]() ![]() | Отличается от нагрузки знаком; Балансирующий по Q, узел ФМ; Балансирующий по мощности, узел ФВ, опорный по U . |
Т.о. режим в узле характеризуя четырьмя основными параметрами:
активная мощность P;
реактивная мощность Q;
составляющие напряжения .
При расчетах, как правило, два из них заданы, остальные два - неизвестны.
4. Коммутационные аппараты
Это устройства, с помощью которых осуществляется подключение под нагрузку или отключения элементов в электрической сети – генераторов, трансформаторов, ЛЭП, потребителей и др.
К ним относятся выключатели, разъединители.
Влияние коммутационных аппаратов на режим роботы электрической сети обусловливается их состоянием: включены или отключены. Это нужно учиты-вать при моделировании режимов. При отключении элементов сети, в част-ности ЛЭП, изменяются величины и направление потоков мощности, что влияет на режим цепи в целом.
Пример:
При аварии на линии Л1 нужно включить секционный выключатель. Этим обеспечивается питание потребителя П1 от станции Г2.
При расчетах обычно сопротивление коммутационных аппаратов прини-мается равным .
Пример составления схемы замещения электрической сети
![]() |
Схема замещения электрической сети составляется на основе исходной схемы электрических соединений из схем замещения её элементов, которые располагаются в последовательности их соединения в исходной схеме. Далее составляется расчетная схема сети, которая содержит всю исходную инфор-мацию о сети, необходимую для моделирования её режима.
Исходная схема электрических соединений примера.
Описание схемы:
Схема разомкнута, включает элементы двух классов напряжений - 110кВ и 35кВ. Схема содержит три участка ЛЭП - 1 – 2, 2 – 3 и 3 – 4 и трансформи-рующий участок 4 – 5. Содержит пять узлов из которых три нагру-зочных(2,3,5), узел 1 является опорным по напряжению и балансирующий.
Участки ЛЭП выполнены сталеалюминиевыми проводами марок АС -185, АС -150 и АС – 70, длины линий 70,50 и 60 км.
Трансформатор мощностью 16000кВА, напряжение обмотки ВН - 110кВ.
В узлах 2,3 и 5 - нагрузки мощностью 20+j15; 8+j7 и 12+j8 МВА.
Схема замещения формируется из схем замещения элементов электри-ческой сети и располагаются они в той же последовательности , что и эле-менты в схеме:
|
Участки ЛЭП 1 - 2, 2 – 3 и 3 - 4 представляются П – образными схема-ми замещения, трансформаторный участок 4 – 5 представляется Г – образной схемой. Так как участки ЛЭП – напряжением 110, то пренебрегаем активной составляющей их поперечной проводимости.
Далее нужно определить параметры элементов схемы замещения, используя справочные данные о марках проводов и типах трансформаторов.
На основе схемы замещения составляется расчетная схема. Она содер-жит всю информацию о конфигурации электрической сети и параметрах схемы замещения, необходимую для расчета её режима:
|
Лекция 5
|
1. Линии электропередач
R X
П – образная схема замещения.
Для линий напряжением выше
110 кВ длиной до 300-400 км.
Продольное активное сопротивление R
,
где l – длина линии (км);
r0 – погонное активное сопротивление провода (сопротивление единицы длины) при температуре (Ом/км). Его значение берут из справочных таб-лиц.
Для учета влияния температуры окружающей среды можно использовать уточненную формулу:
.
Здесь t – текущая температура.
Продольное реактивное сопротивление X
(Ом),
где x0 – погонное реактивное сопротивление провода (справочная величина).
Эта величина зависит от конструкции фаз ЛЭП, взаимного расположения фаз относительно друг друга и относительно земли. А это зависит от конструкции опор ЛЭП. Конструкция опор различна для сетей разных классов напряжения.
Т.о. и реактивное сопротивление провода различается при использовании его в ЛЭП разных классов напряжения. Это учтено в справочных таблицах марок проводов, т.е. задаются разные значения x0 провода для разных напряжений.
Зависимость значения x0 от параметров и конструкции опор ЛЭП отражена в более точной формуле:
Здесь Dср – среднегеометрическое расстояние между фазами (см);
![]() |
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-52.gif)
![]() | |||
![]() | |||
|
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-55.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-56.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-57.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-58.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-59.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-60.gif)
аср – среднегеометрическое расстояние между проводами одной фазы;
Расцепление фаз выполняется для борьбы с коронированием:
330 кВ
![]() |
500 кВ
![]() |
750 кВ
n – число проводов в фазе;
r - радиус провода .
Поперечная активная проводимость ЛЭП g
Учитывается при расчетах режимов сетей напряжением 330 кВ и выше с учетом потерь на корону:
g0 – погонная активная проводимость. Справочная величина.
Её можно определить, также, по формуле:
где - потери активной мощности на корону на 1 км (кВт/км).
Зависят от погоды.
Поперечная реактивная проводимость b
(См),
b0 - погонная реактивная проводимость;
l – длина участка ЛЭП.
Существуют более точные формулы для определения b0:
Поперечная проводимость (реактивная составляющая ) зависит от класса напряжение линии, в которой используется провод (аналогично х0 ).
В некоторых справочных таблицах (для сетей 110-330 кВ) вместо b0 ука-зывается величина q0 - погонная зарядная мощность.
Полпая зарядная мощность линии:
.
Фрагмент справочной таблицы марок проводов
Провода марки АС (сталеалюминиевые провода) для сетей 35-110кВ.
Параметры заданы для 100 кМ провода.
Марка провода | Сечение провода(алюминий/сталь) мм2 | r0, Ом ![]() | X0,Ом ![]() | 110кВ | |
X0,Ом | ![]() | ||||
АС -70 АС -95 АС -120 АС -150 АС -185 | 70/11 95/16 120/19 150/24 185/29 | 29,9 24,5 19,4 15,9 | 41,1 40,3 39,8 38,4 | - 42,9 42,3 41,6 40,9 | - 2,65 2,69 2,74 2,82 |
Пример расчета параметров схемы замещения
Сеть110 кВ
Нужно составить схему замещения, определить параметры её элементов, составить расчетную схему.
;
Расчетная схема:
2.45+j4.23 1.495+j2.145
А j0.269*10-4 Б j0.1324*10-4 С
2. Двухобмоточные трансформаторы
| |||
| |||
Г – образная схема замеще-
ния.
Её параметры определя-
ются на основе справоч-
|
Продольное активное сопротивление RТ :
- номинальное напряжение обмотки
- номинальная мощность трансформатора,
- потери короткого замыкания,
.
Продольное реактивное сопротивление XT:
Up – реактивная составляющая падения напряжения в трансформаторе при
номинальной нагрузке:
,
Uк – напряжение короткого замыкания, (справочная величина)
Ua – активная составляющая падения напряжения в трансформаторе, ,
численно равна потерям мощности короткого замыкания ( ) в
:
Ua% = *100/ST
При расчетах сетей 35 кВ и выше принимаем .
Коеффициент трансформации КТ
При наличии регулирования коеффициента трансформации, его значение определяется по формуле:
,
Здесь - шаг регулирования, n – номер ответвления. Это справочные ве-личины.
Поперечные элементы:
активная проводимость gT
- потери холостого хода, МВт ( справочная величина).
реактивная проводимость bT
Ix.x - ток холостого хода(справочная величина), Iн .
Фрагмент справочной таблицы трехфазных двухобмоточных
трансформаторов 35 кВ
Тип трансформа-тора | ST МВА | Преде-лы регу-лиро-вания | Каталожные данные | Расчетные данные | |||||||||
Uном ,кВ | Uk % | ![]() | ![]() | Iхх % | RT, Ом | XT, Ом | |||||||
ВН | НН | ||||||||||||
![]() | 0,63 | ![]() | 10,5 6,3 | 6,5 | 7,6 | 2,0 | 2,0 | ||||||
![]() | ![]() | 38,5 | 10,5 6,3 | 7,5 | 14,5 | 0,8 | 0,87 | 10,1 | |||||
Тип трансформатора включает характеристику его конструктивных реше-ний (тип охлаждения, вид переключения ответвлений, особенности исполне-ния и т.д.), номинальные мощность и напряжение обмотки ВН (цифровая часть).
Лекция 6
Пример расчета параметров схемы замещения двухобмоточного трансфор-матора :
![]() | |||||
| |||||
| |||||
|
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-115.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-115.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-115.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-118.gif)
![КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ КВ. Существуют 3-х обмоточные трансформаторы с расщеплённой вторичной обмоткой, н-р 110/10/10 кВ - student2.ru](/images/matematika/kv-sushhestvuyut-3-kh-obmotochnye-transformatory-s-rasshheplyonnoy-vtorichnoy-obmotkoy-n-r-110-10-10-kv-456200-119.gif)
![]() |
Составить схему замещения и определить параметры её элементов.
|
|
|
![]() | |||
![]() | |||
|
![]() |
Определяем параметры схемы замещения трансформатора:
Из справочной таблицы
Так как рассчитывается сеть 35кВ, то Up=Uк=6.5
При переключении регулятора на ответвление -1, т.е.
Таким образом, напряжение на низкой стороне трансформатора UН повысилось при неизменном напряжении на высокой стороне. Регулируя KT можно изменять напряжение на вторичной обмотке трансформатора и подключенной к ней электрической сети в зависимости от режима её роботы.