Глава 9. Почему исчисления логики и арифметики применимы к реальности?

В своем выступлении1 проф. Райл ограничился вопросом применимости правил логики, точнее, логических правил вывода. Я последую его примеру и лишь несколько позднее включу в обсуждение применимость логических и арифметических исчислений. Различие, о котором я только что упомянул, между логическими правилами вывода и так называемыми логическими исчислениями (например, пропозициональным исчислением, исчислением классов или исчислением отношений) требует, однако, некоторого разъяснения, и я буду рассматривать это различие, а также связь между правилами вывода и исчислениями, в разделе I. Затем я перейду к рассмотрению двух наших главных проблем: применимость правил вывода (раздел II) и применимость логических исчислений (раздел VIII).

Я буду ссылаться на некоторые идеи, содержащиеся в выступлении проф. Райла, а также в его президентском обращении к Аристотелевскому обществу «Знание Как и знание Что» (1945)2.

Это было третье выступление на совместном заседании Ассоциации «Mind» и Аристотелевского общества, состоявшемся в Манчестере в 1946 г. Впервые оно было опубликовано в «Известиях Аристотелевского общества», дополнительный 20-й том. Первым выступал проф. Гилберт Райл. Вторым был доктор К. Леви, однако текст его сообщения поступил слишком поздно, чтобы я мог затронуть его в своем выступлении, первый абзац которого здесь опущен. (338:)

I

Рассмотрим простой пример аргументации или рассуждения, сформулированных в некотором языке, скажем, в обычном английском. Рассуждение будет состоять из последовательности утверждений. Допустим, кто-то рассуждает: «Рэчел — мать Ричарда. Ричард является отцом Роберта. Мать отца является бабушкой. Таким образом, Рэчел есть бабушка Роберта».

Слова «таким образом» в последнем предложении можно считать указанием на то, что говорящий считает свое рассуждение убедительным или верным, иными словами, что последнее утверждение (заключение) можно вывести из трех предшествующих утверждений (посылок). Считая так, говорящий может быть прав, а может ошибаться. Если он обычно прав в рассуждениях такого рода, то можно считать, что он знает, как рассуждать. Причем он может знать, как рассуждать, не будучи способным объяснить нам правила той процедуры, согласно которой он действует (совместно с другими, знающими, как рассуждать). Так пианист может знать, как хорошо играть на фортепиано, не будучи способным объяснить нам правила, лежащие в основе хорошего исполнения. Если человек знает, как рассуждать, но при этом не всегда осознает правила рассуждения, то мы обычно говорим, что он рассуждает «интуитивно». И если мы вновь прочтем приведенное выше рассуждение, то мы — опять-таки интуитивно — можем сказать, что это рассуждение правильно. Трудно усомниться в том, что, как правило, большинство из нас рассуждает интуитивно. Формулировка и анализ правил, лежащих в основе обычных интуитивных рассуждений, является тонким и сложным делом, которым занимаются логики. В то время как каждый разумный и образованный человек знает, как рассуждать, если рассуждения не становятся слишком сложными, очень немногие способны сформулировать правила, на которые опираются эти рассуждения и которые можно назвать «правилами вывода». Мало людей, которые знают, что (и еще меньше тех, (339:) которые знают, почему) определенные правила вывода общезначимы.

Конкретное правило вывода, лежащее в основе приведенного выше рассуждения, можно сформулировать с помощью переменных и нескольких дополнительных символов следующим образом3.

Из трех посылок вида:

«х R у»

«у S z»

«R «S = Т»

можно вывести заключение вида: «х Tz».

Здесь вместо «х», «у» и «z» можно подставить любое собственное имя индивидов, а вместо «R», «S» и «Т» — имена любых отношений между индивидами; вместо «xRy» и т.п. — любое высказывание, утверждающее, что между х и у имеется отношение R; вместо «R «S» — имя любого отношения, существующего между х и z тогда и только тогда, когда существует такой у, что х R у и у S z\ знак «=» выражает здесь равенство областей между отношениями.

Следует отметить, что это правило вывода говорит об утверждениях определенного вида или формы. Это очевидным образом отличает его от формул исчисления (в данном случае исчисления отношений), например, от такой:

«для всех R, Sw Т, для всех*, у и с селах R у nySzuR«S=T, то* 7>>.

Безусловно, эта формула похожа на наше правило вывода, более того, данное утверждение (исчисления отношений) соответствует нашему правилу вывода. Однако это не одно и то же: данная формула что-то условно утверждает обо всех отношениях и индивидах определенного вида, в то время как правило вывода что-то утверждает безусловно о всех утверждениях определенного вида, а именно, что каждое утверждение определенного вида безусловно выводимо из множества утверждений другого вида.

Аналогичным образом мы должны отличать правило вывода (модус «Barbara») традиционной логики: (340:)

«М а Р»

«S а М»

«S а Р» от формулы исчисления классов «Если Ma PuSa Л/, то Sa P> (или в несколько более современном написании: «Если с С Ъ и а О с, то а Ob»), или правило вывода, называемое «принципом вывода пропозициональной логики», или modus ponens:

Р

Если р, то q

от формулы пропозиционального исчисления: «Если р и если р, то q, то q».

Действительно, для каждого известного правила вывода существует логически истинная гипотетическая или условная формула некоторого известного исчисления, «логико-гипотетическая» формула, как выражается проф. Райл. Порой это приводит к отождествлению правил вывода и соответствующих условных формул. Однако между ними существуют важные различия. (1) Правила вывода всегда являются утверждениями об утверждениях или о классах утверждений (они являются «металингвистическими»), формулы же исчислений не таковы. (2) Правила вывода представляют собой категорические утверждения о выводимости, в то время как соответствующие формулы исчислений являются условными или гипотетическими «если... то...» утверждениями, которые ничего не говорят о выводимости, выводе, посылках или заключениях. (3) После подстановки констант на место переменных правило вывода нечто утверждает относительно определенного рассуждения — относительно «соблюдения» этого правила — а именно, что это рассуждение верно; однако соответствующая формула после такой подстановки превращается в логическую тавтологию, т.е. в утверждение типа «Все столы есть столы», хотя и имеющую гипотетическую форму: «Если это стол, то это стол», или «Если все люди смертны и все греки люди, то все греки смертны». (4) Правила вывода никогда не используются в качестве посылок в тех рассуждениях, которые сформулиро-

ваны в соответствии с ними; однако соответствующие формулы используются в этом качестве. Действительно, одна из главных целей построения логического исчисления состоит в том, чтобы используя «логико-гипотетические» утверждения (т.е. гипотетические тавтологии, соответствующие определенным правилам вывода) в качестве посылок, обойтись без каких-то правил вывода. С помощью этого метода мы можем устранить все правила вывода за исключением одного, упомянутого выше «принципа вывода» (или двух, если добавить сюда «принцип подстановки», чего, однако, можно избежать). Иными словами, построение логических исчислений есть метод сведения громадного числа правил вывода к одному (или двум). Место всех остальных занимают формулы исчисления. Мы получаем то преимущество, что все это бесконечное число формул можно систематически вывести (используя «принцип вывода») всего из нескольких формул.

Для каждого известного правила вывода существует доказуемая формула известного логического исчисления. Обратное в общем виде неверно (хотя справедливо для гипотетических формул). Например, для формулы «р или не-/?» или «не-(р и не-/?)» и многих других формул, которые не являются гипотетическими, не существует соответствующих правил вывода.

Таким образом, следует тщательно различать правила вывода и формулы логических исчислений. Однако это не запрещает нам интерпретировать определенное подмножество этих формул — «логико-гипотетические» формулы — как правила вывода. Утверждение о том, что для каждой такой гипотетической формулы имеется соответствующее правило вывода, оправдывает такую интерпретацию.

II

После этих предварительных замечаний, носящих технический характер, мы можем теперь обратиться к истолкованию проф. Райлом вопроса: «Почему правила вывода применимы к реальности?» Этот вопрос является важной частью нашей первоначальной проблемы, ибо мы только что убеди-

лись в том, что некоторое подмножество формул логических исчислений (те, которые проф. Райл назвал «логико-гипотетическими») можно интерпретировать в качестве правил вывода.

Если я правильно понял, центральный тезис проф. Райла состоит в следующем. Правила логики, точнее, правила вывода являются правилами образа действий [procedure]. Это означает, что они применимы к определенным процедурам, а не к вещам или фактам. Они неприменимы к реальности, если под «реальностью» мы подразумеваем вещи и факты, описанные, скажем, ученым или историком. Они не «применимы» в том смысле, в котором описание, скажем, некоторого человека можно применить — или подогнать — к описанному человеку или к какому-то другому человеку, или в том смысле, в котором описательная теория, например, ядерного резонанса, может быть применена — или подогнана — к атомам урана. Логические правила применимы к процедурам выведения следствий — приблизительно так, как правила дорожного движения применимы к способам езды на велосипеде или вождения автомобиля. Логические правила можно соблюдать или нарушать, и их применение означает их соблюдение, действие в соответствии с ними. Если вопрос «Почему правила логики применимы к реальности?» ошибочно истолковывается как вопрос «Почему правила логики пригодны для вещей и фактов нашего мира?», то ответ на него состоял бы в том, что этот вопрос предполагает применимость правил логики к фактам, в то время как нельзя сказать ни того, что они «пригодны для фактов мира», ни того, что они «непригодны для фактов мира». Об их соответствии фактам нельзя говорить точно так же, как нельзя говорить о соответствии фактам правил дорожного движения или правил шахматной игры.

Кажется, что наша проблема разрешена. Тот, кто спрашивает, почему правила вывода применимы к миру, и тщетно пытается вообразить себе нелогичный мир, является жертвой двусмысленности. Правила вывода представляют собой правила образа действий, поэтому они «применяются» в том смыс-

ле, что их соблюдают. Поэтому мир, в котором они не применяются, будет не нелогичным миром, а просто миром, населенным нелогичными людьми.

Этот анализ (проф. Райла) представляется мне верным и глубоким, и он указывает направление, в котором следует искать решение нашей проблемы. Однако само по себе решение проф. Райла меня не удовлетворяет.

Я вижу ситуацию следующим образом. Анализ проф. Райла показывает, что одна из интерпретаций нашей проблемы сводит ее к псевдопроблеме, делает ее бессмысленной. За многие годы я выработал для себя личное правило не удовлетворяться сведением проблем к псевдопроблемам. Когда я вижу, что кому-то удалось успешно свести проблему к псевдопроблеме, то я всегда спрашиваю себя, нельзя ли найти иную интерпретацию исходной проблемы — такую интерпретацию, которая покажет, что за исходной проблемой, помимо псевдопроблемы, кроется еще и некоторая реальная проблема? Многие случаи убедили меня в том, что мое личное правило полезно и плодотворно. Я совершенно согласен с тем, что сведение первоначальной проблемы к псевдопроблеме часто может быть чрезвычайно ценным: оно показывает, что здесь существует опасность путаницы, и часто помогает нам обнаружить реальную проблему. Но оно не дает решения, как получилось и в данном случае.

III

Я согласен с проф. Райлом относительно того, что правила логики (или правила вывода) являются правилами образа действий и, как он сам указывает, что их можно рассматривать как хорошие или полезные правила деятельности. Но теперь я хочу высказать предположение о том, что вопрос «Почему правила логики применимы к реальности?» можно интерпретировать как вопрос «Почему правила логики являются хорошими или полезными правилами деятельности?».

Вряд ли можно отрицать оправданность такой интерпретации. Человек, который применяет правила логики в том смысле, что действует в соответствии с ними или, как говорит проф. (344:) Райл, «соблюдает» их, по-видимому, делает это потому, что считает их практически полезными. Однако в конце концов это означает, что он считает их полезными, имея дело с реальной ситуацией, т.е. с реальностью. Когда мы спрашиваем «Почему эти правила полезны?», то это очень похоже на вопрос «Почему они применимы?», и я полагаю, что приблизительно это подразумевается в первом вопросе. В таком случае наш вопрос уже не выглядит как псевдопроблема.

IV

Мне кажется, ответить на наш вопрос сравнительно легко. Человек, считающий полезным соблюдение правил логики, это, как мы видели, человек, делающий выводы, т.е. из некоторых утверждений или описаний фактов, называемых «посылками», он получает другие утверждения или описания фактов, называемые «заключениями». И он считает эту процедуру полезной, поскольку обнаруживает, что когда он — сознательно или интуитивно — соблюдает правила логики, его заключения оказываются истинными, если были истинными посылки. Иными словами, он способен получить надежную (возможно, полезную) косвенную информацию, если его исходная информация была надежной и полезной.

Если это так, то вместо нашего вопроса «Почему правила логики являются хорошими правилами действия?» мы должны поставить другой вопрос, а именно: «Как объяснить тот факт, что логические правила вывода всегда от истинных посылок приводят к истинным заключениям?»

V

Я думаю, на этот вопрос также сравнительно легко ответить. Научившись говорить и использовать наш язык для описания фактов, мы вскоре более или менее хорошо овладеваем процедурой, называемой «рассуждением» или «аргументацией», т.е. интуитивной процедурой получения некоторой вто-

ричной информации, которая не имела явного выражения в нашей первичной информации. Отчасти эта интуитивная процедура может быть представлена в виде правил вывода. Формулировка этих правил является важнейшей задачей логики.

В соответствии с этим мы можем установить, что логические правила вывода являются, по определению, хорошими или «действенными» правилами вывода тогда и только тогда, когда их соблюдение гарантирует получение истинных заключений из истинных посылок. Если же мы обнаруживаем, что соблюдение некоторого правила позволяет нам получить ложное заключение из истинных посылок — я называю это «контрпримером», — то мы не считаем это правило общезначимым. Иными словами, некоторое правило вывода мы называем «общезначимым» тогда и только тогда, когда для этого правила не существует контрпримера и мы можем доказать, что таких контрпримеров не может быть. Аналогичным образом, соблюдение некоторого правила вывода мы называем «общезначимым» тогда и только тогда, когда для соблюдаемого правила не существует контрпримеров.

Таким образом, «хорошее» или «общезначимое» правило вывода полезно потому, что для него нельзя найти контрпримера, и мы можем опираться на него как на правило той процедуры, которая от истинных описаний фактов приводит к истинным описаниям фактов. Об истинном описании можно сказать, что оно соответствует фактам, поэтому «применимость» в смысле «соответствия» в конечном итоге косвенным образом входит в наш анализ. Можно сказать, что правила вывода применяются к фактам в той мере, в которой каждое их применение к описаниям, соответствующим фактам, приводит к описаниям, которые также соответствуют фактам.

Небезынтересно, быть может, то обстоятельство, что фундаментальное значение того принципа, что общезначимый вывод от истинных посылок всегда должен приводить к истинным заключениям, обсуждалось еще Аристотелем (Первая аналитика, II, 1—4). (346:)

VI

Для того чтобы увидеть, можно ли как-то использовать этот результат, я попробую применить его для критики трех основных истолкований природы логики. Я имею в виду следующие концепции:

(A) Правила логики являются законами мышления.

(A1) Они являются естественными законами мышления — они описывают, как мы в действительности мыслим, и мы не можем мыслить иначе.

(А2) Они представляют собой нормативные законы — говорят нам, как мы должны мыслить.

(B) Правила логики есть наиболее общие законы природы — это дескриптивные законы, справедливые для любых объектов.

(C) Правила логики есть законы определенных дескриптивных языков, управляющие использованием слов и предложений.

Широкая распространенность концепции (A1) объясняется, как мне представляется, тем, что в логических правилах есть нечто непреодолимое и неизбежное, во всяком случае, в наиболее простых. Они считаются хорошими, поскольку мы вынуждены мыслить в соответствии с ними, поскольку невозможно вообразить себе положение дел, когда бы они не действовали. Однако аргумент, опирающийся на невозможность вообразить что-либо, всегда вызывает подозрение. Тот факт, что некоторое правило или суждение кажутся нам истинными, убедительными, непреодолимыми или самоочевидными, очевидно, не дает достаточных оснований считать их истинными, хотя обратное может быть справедливым: их истинность объясняет, почему они кажутся нам истинными или убедительными. Иными словами, если законы логики справедливы для всех объектов, т.е. концепция (В) верна, то их убедительность понятна и очевидна; обратный ход мысли кажется странным. На этом пути критика (A1) приводит к (В).

Но другой путь критики (A1) ведет к (А2): известно, что мы не всегда мыслим в соответствии с законами логики и иног-

да совершаем то, что обычно называют «ошибкой». (А2) утверждает, что следует избегать такого нарушения правил логики. Но почему? Быть может, это аморально? Безусловно, нет. «Алиса в Стране чудес» не аморальна. Быть может, это глупо? Едва ли. Очевидно, следует избегать нарушения правил логики только в том случае, если мы стремимся формулировать или выводить истинные высказывания, т.е. истинные описания фактов. Это рассуждение опять-таки приводит нас к (В).

Однако (В) — концепция, которую поддерживали такие люди, как Бертран Рассел, Моррис Коген и Фердинанд Гонсет, не кажется мне вполне удовлетворительной. Во-первых, как мы подчеркивали вместе с проф. Райлом, потому, что правила вывода являются правилами образа действий, а не дескриптивными утверждениями. Во-вторых, потому, что важный класс логически истинных формул (тех, которые проф. Райл назвал логико-гипотетическими) можно интерпретировать как правила вывода, и они не применимы к фактам в том смысле, в котором применимы описания. В-третьих, потому, что любая теория, которая не видит радикальной разницы между физическим трюизмом (например, «Все камни обладают тяжестью») и логической тавтологией (например, «Все камни являются камнями» или «Либо все камни обладают тяжестью, либо некоторые камни не обладают тяжестью»), не может быть удовлетворительной. Мы чувствуем, что логически истинное суждение истинно не потому, что описывает особенности всех возможных фактов, а просто потому, что исключает риск опровержения каким-либо фактом. Оно не исключает ни одного возможного факта, следовательно, вообще ничего не утверждает о фактах. Нам не нужно вникать здесь в проблему статуса логических тавтологий. Каким бы ни был этот статус, логика все-таки есть учение об общезначимых выводах, а не о логических тавтологиях.

Концепцию (С) критиковали, и я думаю, справедливо, за то, что она связана с истолкованием языка как «простого набора символов», т.е. символов, лишенных какого-нибудь «значения» (что бы это ни значило). Я думаю, эту точку зрения (348:) трудно защищать. И наше определение общезначимого вывода, безусловно, не было бы пригодно для такого «простого набора символов», ибо в нем использован термин «истина». О «простом наборе символов», лишенных значения, мы уже не смогли бы сказать, что он содержит истинные или ложные утверждения. Следовательно, у нас не было бы правил вывода в нашем смысле, и мы не смогли бы ответить на вопрос о том, почему правила логики хороши, полезны или общезначимы.

Но если под языком мы понимаем символизм, позволяющий нам высказывать истинные утверждения (и в отношении которого мы способны объяснить, как это впервые сделал Тарский, что мы имеем в виду, когда называем некоторое утверждение истинным), то, как мне представляется, возражения против концепции (С) в значительной мере утрачивают свою остроту и силу. Общезначимым правилом вывода в такой семантической языковой системе будет такое правило, для которого в данной языковой системе нельзя найти контрпримера, ибо его не существует.

Можно заметить, между прочим, что эти правила вывода не обязательно носят «формальный» характер, как это бывает в работах логиков. Их характер будет зависеть от характера исследуемой семантической языковой системы (примеры таких систем были рассмотрены Тарским и Карнапом). Однако для языков, обычно рассматриваемых логиками, правила вывода будут, как обычно, «формальными».

VII

Как показывает мое последнее замечание, правила образа действий, рассматриваемые нами, т.е. правила вывода, всегда до некоторой степени зависят от языковой системы. Но всем им присуще одно общее свойство: их соблюдение приводит от истинных посылок к истинным заключениям. Поэтому не может существовать альтернативной логики в том смысле, что ее правила вывода от истинных посылок приводят к заключениям, которые не являются истинными. Это объясняется тем, (349:) что термин «правило вывода» мы определили так, что такое невозможно. (Это не исключает возможности рассматривать правила вывода как особый случай более общих правил, например, таких, которые позволяют нам получать определенные квазизаключения с некоторой степенью «вероятности» из каких-то истинных квазипосылок.) Тем не менее, альтернативные логики могут существовать в том смысле, что они формулируют разные системы правил вывода для языков, отличающихся друг от друга своей «логической структурой».

Возьмем, например, язык категорических суждений (субъектно-предикатных утверждений), для которого правила вывода формулирует традиционная система категорического силлогизма. Логическая структура этого языка характеризуется тем, что он содержит очень небольшое число логических знаков — знаки для связки и ее отрицания, для общих и частных суждений, возможно, знак для дополнения (или отрицания) так называемых «терминов». Если теперь мы посмотрим на рассуждение, сформулированное в разделе I, то увидим, что его посылки и заключение можно выразить в языке категорических суждений. Однако при этом оказывается невозможным сформулировать общезначимое правило вывода, выявляющее общую форму данного рассуждения, и нельзя защитить справедливость данного рассуждения, если оно выражено в языке категорических суждений. Как только слова «мать Ричарда» мы объединили в один термин — предикат нашей первой посылки, — их уже нельзя разделить снова. Логическая структура этого языка слишком бедна для выражения того факта, что этот предикат некоторым образом содержит субъект второй посылки и часть субъекта третьей посылки. То же самое справедливо для других двух посылок и для заключения. Если же мы попытаемся сформулировать соответствующее правило вывода, то мы получим что-то такое:

«А есть Ь»

« С есть d»

«Все е есть/>

«А есть g» (350:)

(Здесь «А» и «С» представляют «Рэчел» и «Ричард»; «Ь» — «мать Ричарда»; «d» — «отец Роберта»; «е» — «мать отца»; «f» — «бабушка» и «g» — «бабушка Роберта».) Конечно, это правило не является общезначимым, так как в языке категорических суждений мы можем построить сколько угодно контрпримеров. Таким образом, даже если некоторый язык достаточно богат для описания всех фактов, которые нам нужны, в нем может не оказаться средств для формулировки правил вывода, охватывающих все переходы от истинных посылок к истинным заключениям.

VIII

Эти последние соображения могут быть полезны для расширения нашего анализа на проблему применимости исчислений логики и арифметики, ибо до сих пор (следуя проф. Райлу) мы рассматривали только применимость правил вывода.

Мне кажется, построение так называемых «логических исчислений» вызвано, главным образом, стремлением создавать такие языки, относительно которых можно «формализовать» все те правила вывода, которые мы интуитивно знаем, как осуществлять, иначе говоря, показать, что мы осуществляем выводы в соответствии всего лишь с несколькими общезначимыми правилами вывода. (В качестве правил образа действий эти правила вывода говорят об исследуемом языке или исчислении. Следовательно, они формулируются не в самом исследуемом исчислении, а в так называемом «метаязыке» этого исчисления, т.е. в языке, на котором мы говорим о самом исчислении.) Например, силлогистическую логику можно рассматривать как попытку построить такой язык, и многие ее приверженцы до сих пор убеждены в том, что попытка удалась и что все действительно общезначимые выводы формализованы в ее фигурах и модусах. (Мы видели, что это не так.) Для достижения этой цели были построены другие системы (на-

пример, Principia Mathematica*), которым удалось формализовать практически все общезначимые правила вывода, выполняемые не только в обыденных рассуждениях, но и в математической аргументации. Задачу построения такого языка или исчисления, в котором можно было бы формализовать все общезначимые правила вывода (отчасти с помощью логических формул самого исчисления, а отчасти с помощью нескольких правил вывода, относящихся к этому исчислению), пытались рассматривать как фундаментальную проблему логики. Теперь есть основания считать эту проблему неразрешимой, по крайней мере, если для формализации относительно простых интуитивных выводов мы не разрешаем использовать процедуры совершенно иного характера (например, выводы из бесконечного класса посылок). В настоящее время положение таково: хотя для любого данного общезначимого интуитивного вывода можно построить язык, позволяющий формализовать этот вывод, нельзя построить язык, позволяющий формализовать все общезначимые интуитивные выводы. Эта интересная ситуация, которую, насколько мне известно, впервые рассмотрел Тарский, учитывая исследования Геделя, имеет отношение к нашей проблеме, поскольку показывает, что применимость каждого исчисления (в смысле его пригодности в качестве языка, относительно которого можно сформулировать каждый интуитивно общезначимый вывод) в той или иной степени ограничена.

Теперь я обращаюсь к нашей проблеме применимости, ограничившись, на первое время, логическими исчислениями, точнее, утверждаемыми формулами логических исчислений. Почему эти исчисления, которые могут включать в себя арифметику, применимы к реальности?

Я попробую дать ответ на этот вопрос в виде трех утверждений.

(а) Как правило, эти исчисления представляют собой семантические системы4, т.е. языки, предназначенные для описания определенных фактов. Если они служат этой цели, то в этом нет ничего удивительного.

* Начала математики (лат.). — Примеч. ред. (352:)

(б) Они могут быть построены таким образом, что не достигают этой цели. Это видно из того факта, что некоторые исчисления, например, арифметика натуральных или действительных чисел, пригодна для описания одних фактов, но не годится для описания других фактов.

(в) В той мере, в которой исчисление применимо к реальности, оно утрачивает характер логического исчисления и становится описательной теорией, которую можно опровергнуть эмпирически; если же его истолковывают как неопровержимое, т.е. как систему логически истинных формул, а не как описательную научную теорию, оно не применимо к реальности.

В данном разделе мы коротко рассмотрим лишь (б) и (в), замечание относительно (а) будет высказано в следующем разделе.

Обратившись к (б), можно заметить, что исчисление натуральных чисел используется для подсчета бильярдных шаров, пенсов или крокодилов, в то время как исчисление действительных чисел дает средства для измерения континуальных величин, таких как геометрические расстояния или скорости. (Это становится особенно ясно в теории действительных чисел Брауэра.) Мы не можем сказать, например, что в нашем зоопарке имеется π крокодилов. Для подсчета крокодилов мы пользуемся исчислением натуральных чисел. Но для того чтобы установить, на какой географической широте расположен наш зоопарк, или его расстояние от Гринвича, нам может потребоваться число π. Поэтому трудно согласиться с мнением о том, что любое из исчислений арифметики применимо к любой реальности (кажется, на этом мнении основывается та проблема, которую мы обсуждаем на нашем симпозиуме).

Теперь обратимся к (в). Суждение типа «2 + 2 = 4» можно применять, например, к яблокам, в разных смыслах, из которых я рассмотрю только два. В первом смысле утверждение «2 яблока + 2 яблока = 4 яблока» считается неопровержимым и логически истинным. Однако оно столь же мало описывает какие-то факты относительно яблок, как и утверждение «Все яблоки есть яблоки». Подобно последнему утверждению, оно (353:) является логической тавтологией: единственное различие состоит в том, что оно опирается не на определения знаков «все» и «есть», а на определения знаков «2», «4», «+» и «=». (Эти определения могут быть явными или неявными.) В этом случае мы могли бы сказать, что данное применение является не истинным, а мнимым, что здесь мы не описываем какую-то реальность, а лишь утверждаем, что один способ описания реальности эквивалентен другому.

Более важным является применение во втором смысле. В этом смысле «2 + 2 = 4» означает, что если кто-то положил в корзину два яблока, потом еще два и ничего не вынимал из корзины, то в корзине окажется четыре яблока. При такой интерпретации утверждение «2 + 2 = 4» помогает нам вычислять, т.е. описывать определенные физические факты, и символ «+» представляет некоторое физическое действие — добавление одних предметов к другим. (Здесь мы видим, что логический символ иногда можно интерпретировать дескриптивно5.) Но в этой интерпретации утверждение «2 + 2 = 4» становится скорее физической, нежели логической теорией. И поэтому мы уже не можем быть уверенными в том, что оно останется универсально истинным. Оно справедливо для яблок, но едва ли справедливо для кроликов. Если вы сунете в клетку 2 + 2 кроликов, то вскоре можете обнаружить там 7 или 8 кроликов. Оно неприменимо и к таким вещам, как капли. Если вы накапаете в бутылку 2 + 2 капель, то вы никогда не найдете там четырех капель. Иными словами, если вас удивляет, что «2 + 2 = 4» не всегда применимо в мире, то ваше удивление легко устранить. Пара кроликов разного пола или несколько капель воды служат моделью такого мира. Если вы отвечаете, что эти примеры не являются подходящими, поскольку с кроликами и каплями что-то происходит и поскольку равенство «2 + 2 = 4» применимо только к таким объектам, с которыми ничего не происходит, то я скажу, что тогда вы имеете дело не с «реальностью» (ибо в «реальности» все время что-то происходит), а с абстрактным миром неизменных объектов. В той мере, в которой наш реальный мир похож на абст-

рактный мир, в котором наши яблоки не гниют, кролики и крокодилы не размножаются, иными словами, в той мере, в которой наши физические действия похожи на чисто логическую или арифметическую операцию сложения, арифметика, конечно, будет применима. Но это утверждение тривиально.

Аналогичное утверждение можно высказать относительно сложения измерений. Отнюдь не является логически необходимым, что два прямых стержня длиной а, будучи сложены своими концами, дадут длину 2а. Легко вообразить себе мир, в котором стержни ведут себя согласно законам перспективы, т.е. точно так же, как они ведут себя в зрительном поле или на фотографии, — мир, в котором они сокращаются в направлении от определенного центра. В отношении сложения определенных измеряемых величин, например, скоростей, мы живем именно в таком мире. Согласно специальной теории относительности, обычное сложение измерений неприменимо к скоростям (т.е. ведет к ложным результатам) и должно быть заменено другим. Конечно, можно не соглашаться с тем, что обычное вычисление суммы неприменимо к скоростям, и сопротивляться любому его изменению. Это равнозначно утверждению о том, что скорости должны складываться обычным образом, или, иными словами, что их следует определять так, чтобы они удовлетворяли обычным законам сложения. Однако в этом случае скорости уже не будут определяться эмпирическими измерениями (мы не можем определять одно понятие двумя разными способами), и наше исчисление будет неприменимо к эмпирической реальности.

Проф. Райл помог нам рассмотреть проблему посредством анализа слова «применимо». Мои последние замечания можно рассматривать как дополнительную попытку подойти к решению проблемы посредством анализа слова «реальность» (а также различия между логическим и дескриптивным использованиями символов). Я убежден в том, что всегда, когда мы сомневаемся, относятся ли наши утверждения к реальному миру, мы должны спросить себя, готовы ли мы признать их эмпирическую опровержимость. Если мы решили защищать (355:) наши утверждения, несмотря на опровержения (доставляемые кроликами, каплями или скоростями), то мы не говорим о реальности. Мы говорим о реальности только в том случае, когда готовы признать опровержения. Пользуясь словами проф. Райла, мы могли бы сказать: только в том случае, когда мы знаем, как учесть опровержение, мы знаем, как говорить о реальности. Если мы хотим выразить эту готовность или «знание как», то опять-таки должны сделать это с помощью некоторого правила образа действий. Ясно, что помочь здесь может только правило деятельности, ибо говорить о реальности есть деятельность6.

IX

Мои последние замечания — относительно (в) — говорят о направлении, в котором, может быть, следует искать ответ на наиболее важные вопросы, связанные с нашей многоаспектной проблемой. Вместе с тем я хотел бы подчеркнуть, что эту проблему можно поставить гораздо шире. Почему мы вообще достигаем успеха, когда говорим о реальности? Не должна ли реальность обладать определенной структурой для того, чтобы мы могли о ней говорить? Можем ли мы представить себе, что реальность похожа на густой туман, в котором нет тел и движений? Или это туман, в котором происходят определенные изменения, например, неопределенные изменения света? Конечно, сама моя попытка описать такой мир показывает, что его можно описать в нашем языке, однако отсюда не следует, что мы можем описать любой такой мир.

В таком виде вопрос представляется не слишком серьезным, однако не стоит отбрасывать его слишком быстро. На самом деле, как мне представляется, все мы близко знакомы с миром, который нельзя описать в нашем языке, ибо наш язык предназначен главным образом для описания нашего физического окружения, т.е. физических тел средних размеров, движущихся с невысокой скоростью. Я имею в виду, конечно, мир «нашего сознания» — тот самый мир, который психологи (356:) (за исключением бихевиористов) безуспешно пытаются описывать с помощью метафор, заимствованных из языка физики, биологии или социальных наук.

Наши рекомендации