Контрольная работа №8
Контрольная работа № 8
Кратные и криволинейные интегралы.
Элементы теории поля.
ТЕМА 8. Кратные и криволинейные интегралы.
Элементы теории поля.
1. Двойные интегралы.
2. Тройные интегралы.
3. Криволинейные интегралы.
4. Теория поля.
СПИСОК ЛИТЕРАТУРЫ
1. Бугров Я.С., Никольский С.М. Высшая математика: Учеб.для вузов:в 3т.-5-е изд.,стер.-М.:Дрофа .- (Высшее образование. Современный учебник).т.2. Дифференциальное и интегральное исчисление.-2003.-509 с.
2. Пискунов Н.С. Дифференциальное и интегральное исчисление: Учеб. пособие: в 2-х т.- Изд. стер. –М.: Интеграл – Пресс.Т.1. -2001.- 415 с.
3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Учеб. для вузов: в 3-х томах. – 8-е изд.-М.: Физматлит. т.1 – 2001. -697 с.
4. Берман Г.Н. Сборник задач по курсу математического анализа: Учеб. пособие. -22-е изд., перераб.- СПб: Профессия, 2003.-432 с.
5. Кудрявцев Л.Д. Курс математического анализа. Учеб. для вузов: В 3-х томах. – 5-е изд., перераб. и доп. –М.: Дрофа. Т.1. – 2003.-703 с.
6. Ильин В.А., Позняк Э.Г. Основы математического анализа. Учеб. для вузов в 2-х частях. – 6-е изд. стер. –М. Физматлит, 2002, -646 с.
7. Данко П.Е. и др. Высшая математика в упражнениях и задачах (с решениями): в 2 ч./ Данко П.Е., Попов А.Г., Кожевникова Т.Я.-6-е изд..-М.: ОНИКС 21 век, ч.2. -2002.-416 с.
Решение типового варианта контрольной работы.
Задача 8.1. Записать двойной интеграл в виде повторного и изменить порядок интегрирования, если область интегрирования .
Решение.Область интегрирования D является правильной (простой) в направлении оси ОУ, т.к. любая прямая, параллельная оси ОУ, пересекает границу области D не более чем двух точках. Первую точку пересечения с линией у=х2 назовем точкой входа, а линию - линией входа, ее уравнение у=х2. Вторую точку пересечения с линией у=2-хназовем точкой выхода, а линию – линией выхода. Тогда повторный интеграл в правой части составлен из двух определенных: первый берется по переменному у, оси которого ОУ параллельны секущие прямые, он называется внутренним. Пределы интегрирования в нем зависят от х и совпадают с ординатами точек пересечения секущих с линией входа (нижний предел) и линией выхода (верхний предел интегрирования). При внутреннем интегрировании переменное х считается постоянным, поэтому его результатом является функция, которая после подстановки пределов интегрирования зависит от х. Второй интеграл по х берется от этой функции по переменному х, а пределы интегрирования в нем равны наименьшему (для нижнего) и наибольшему (для верхнего) значению проекций точек области D на ось ОХ:
При изменении порядка интегрирования линия входа в область D имеет уравнение х=0, а линия выхода разбивается на две части, одна из которых имеет уравнение , а вторая – уравнение . По свойству аддитивности двойного интеграла он разбивается на два, в каждом их которых сделана замена на повторный с внутренним интегрированием по переменному х, а внешним интегрированием по переменному у:
Задача 8.2. Вычислить двойной интеграл по области , ограниченной графиками данных функций
Решение.Область интегрирования D является правильной (простой) в направлении оси ОУ, поэтому заменяем двойной интеграл повторным с внутренним интегралом по у, а внешним – по х. Линией входа в D является прямая , линией выхода – парабола . Вычисляем внутренний интеграл при постоянном х, применяя формулу Ньютона-Лейбница с нижним пределом и верхним пределом Находим точки пересечения параболы и прямой из решения системы
Полученные абсциссы точек пересечения и дают пределы интегрирования во
внутреннем интеграле.
Процесс сведения двойного интеграла к двухкратному сводится к следующему:
Задача 8.3. Вычислить интеграл, перейдя от прямоугольных координат к полярным:
.
Решение.Найдем границы области интегрирования в декартовых координатах.
Преобразуем
Преобразуем
Изобразим область интегрирования:
Для расстановки пределов интегрирования в полярных координатах учтем, что область D – круговой сектор, ограниченный дугой окружности , уравнение которой с учетом связи декартовых и полярных координат примет вид т.е. .
D ограничена также лучами Поэтому требуемый интеграл I в полярных координатах получится из исходного с помощью связи декартовых и полярных координат и домножения на подынтегральной функции внутреннего интеграла по , учитывающего искажение элемента площади в полярных координатах. В других примерах для расстановки пределов интегрирования, использовать, по аналогии с декартовыми координатами, рассечение D лучами, выходящими из центра полярной системы координат. Если они пересекутся с границей D не более чем в двух точках, то эта область - правильная по , и пределы в повторном интеграле с внутренним интегралом по и внешним по расставляются аналогично расстановке по у и х в случае декартовых координат.
Процесс вычисления двухкратного интеграла в полярных координатах после замены пределов интегрирования и подинтегральных выражений сведется к следующему:
.
Задача 8.4. Вычислить объем тела, ограниченного заданными поверхностями:
Решение.При сведении тройного интеграла к трехкратному и в расстановке пределов в каждом из трех определенных интегралов действуем по аналогии со случаем двойного интеграла. Область интегрирования V в примере считаем правильной в направлении оси OZ, т.к. любая прямая, параллельная оси OZ, пересекает границу области не более чем в двух точках. Учитывая, что объем области V выражается в декартовых координатах формулой
а область V ограничена снизу плоскостью z=0, а сверху – поверхностью параболоида вращения z=4-(x2+y2) можно свести тройной интеграл к вычислению двойного интеграла от однократного:
Сначала вычисляется внутренний интеграл по переменному z с нижним пределом z=0 и верхним пределом z=4-(x2+y2). Областью интегрирования D во внешнем двойном интеграле является проекция тела V на плоскость XOY, имеющая вид:
Линия входа в эту область y=0, линия выхода . Проекцией области D на ось OX служит отрезок . Отсюда следует, что во внутреннем интеграле по у нижний предел 0, верхний предел , а во внутреннем интеграле по х нижний предел 0, а верхний предел . В итоге объем V вычисляется с помощью трехкратного интеграла следующим образом:
=
.
Задача 8.5. 1) Вычислить криволинейный интеграл 1-го рода:
где
Решение.Вычисление криволинейного интеграла 1-го рода может быть сведено к вычислению определенного интеграла, причем способ такого сведения зависит от представления кривой интегрирования L. Если L задана уравнением где функция имеет непрерывную производную для , то
Если L задана параметрически: где функции имеют непрерывные производные , для то
Если L задана в полярных координатах уравнением и функция имеет непрерывную производную для , то
В рассмотренном примере используется явное задание кривой L уравнением . Поэтому, используя первый способ сведения интеграла по длине дуги к определенному, получим:
2) Вычислить работу силы при перемещении материальной точки по кривой от точки А(0;0) до точки В(1;1).
Решение.Работа переменной силы по перемещению материальной точки по плоской кривой L c уравнением вычисляется с помощью криволинейного интеграла 2-го рода по координатам
который сводится к определенному интегралу с учетом способа задания кривой L. В приведенном примере кривая L задана явно уравнением . Поэтому, по аналогии с переходом к определенному интегралу в предыдущем примере, достаточно заменить:
. Получим:
Задача 8.6. а) Вычислить площадь части сферы , вырезанной цилиндром и плоскостью
Решение.Область D является кругом (рис.2), поэтому решаем задачу в полярных координатах. Тогда Элемент площади плоской области dS выражается в полярных координатах в виде: . Полярное уравнение окружности, ограничивающей область интегрирования, будет иметь вид:
. Так как область интегрирования содержит начало полярной системы точку О на своей границе, то вычисляем площадь поверхности с помощью поверхностного интеграла 1-го рода:
Рис. 1 Рис. 2
б) Найти поверхностный интеграл 2-го рода где замкнутая поверхность состоит из внешней стороны части поверхности параболоида а также из части плоскости
Решение.Применяем формулу Остроградского-Гаусса к поверхностному интегралу 2-го рода I:
.
В векторной форме формула Остроградского-Гаусса имеет вид:
где в левой части – поток П векторного поля через замкнутую поверхность а
Но тогда где векторное поле имеет вид:
Но
Рис. 3.
Следовательно,
Задача 8.7. а) Найти координаты центра тяжести плоской однородной пластины D, ограниченной линиями
Решение.Считаем плотность однородной пластины Тогда ее статические моменты относительно осей ОХ и ОУ определяются формулами: , а координаты ее центра тяжести определяются формулами: , где - масса однородной пластины D с плотностью Применяя эти формулы, получаем:
,
Тогда .
б) Доказать, что работа силы зависит только от начального и конечного положения точки ее приложения и не зависит от формы пути. Вычислить работу при перемещении точки приложения силы из в
Решение.Проверяем условие, достаточное для того, чтобы работа силы по перемещению точки по дуге не зависела от формы пути:
,
, то есть .
При этом функции непрерывны в любой односвязной области D, содержащей
Тогда, для вычисления работы А = находим криволинейный интеграл 2-го рода
В силу независимости этого интеграла от пути интегрирования вычислим его вдоль ломаной где точка :
Тогда
При вычислении криволинейного интеграла 2-го рода по меняется от 0 до 1, а при вычислении аналогичного интеграла по а меняется от 0 до 1.
Задача 8.8 а) Найти величину и направление наибольшего изменения поля в точке
Решение. Доказано (см. [1], [2], [5], [6]), что скалярное поле U(M) имеет в данной точке М0 максимальную производную по направлению , которая равна модулю градиента поля U в этой точке:
если за вектор , указывающий направление дифференцирования, взять направление вектора gradU(M0). Поэтому в задаче требуется найти сам вектор
Приведем соответствующие вычисления:
,
,
,
б) Выяснить, является ли векторное поле потенциальным.
Решение.Векторное поле потенциально, если в каждой точке М из области определения поля Находим
В этой формуле для удобства запоминания метода вычисления ротора использован формальный оператор Гамильтона «набла»:
,
действующий по правилу нахождения векторного произведения в прямоугольных декартовых координатах.
Для других типов полей, исследуемых в задании 8, приведем их определения:
Соленоидальное поле в каждой точке М области V удовлетворяет условию
.
Гармоническое поле является в каждой точке области V одновременно потенциальным и соленоидальным, то есть и
В нашем случае Тогда
следовательно, поле не является потенциальным.
Контрольная работа №8.
Вариант 1.
8.1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области интегрирования
8.2. Вычислить двойной интеграл по области D
8.3. Вычислить интеграл, перейдя от прямоугольных декартовых координат
к полярным:
8.4. Вычислить площадь плоских фигур, ограниченных данными линиями
8.5. Вычислить криволинейный интеграл 1-го рода
8.6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее. x2+z2=1, 2x+y=2, y-2, z=0 x>0, y>0, z>0
8.7. Найти координаты центра тяжести плоских однородных пластин, ограниченных заданными линиями x>0, y>0
8.8. Найти угол между градиентами скалярных полей в точке