Элементы линейной алгебры. Задача 5.Найти матрицу, обратную матрице
Задача 5.Найти матрицу, обратную матрице
.
Проверить результат, вычислив произведение данной и обратной матриц.
5.1. 5.2. 5.3.
5.4. 5.5. 5.6.
5.7. 5.8. 5.9.
5.10.
Задача 6. Дана система линейных уравнений
Доказать ее совместность и решить двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления:
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.
Введение в математический анализ
Задача 7.Найти пределы функций, не пользуясь правилом Лопиталя:
7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.
7.10.
Задача 8. Найти пределы функций, не пользуясь правилом Лопиталя:
8.11) ;при: а) = 2, б) в)
;
4) .
8.2.1) при: а) = 0; б) ; в) ;
2) 3) ; 4) .
8.3.1)при: а) = 3; б) -3 ; в) ;
2) 3) 4)
8.4.1) ; при: а) = -3; б) в) ;
2) 3) ; 4)
8.5.1) при: а) = 2; б) 4; в) ;
2) 3) 4) .
8.6.
при: а) = 2; б) 5; в) ;
3) 4)
8.7.1) при: а) =1; б) -4; в) ;
2) 3) 4)
8.8.1) при: а) =5; б) -5; в) ;
2) 3) 4)
8.9.1) при: а) =-2; б) 1; в) ;
2) 3) 4)
8.10.1) при: а) =-2; б) -1; в) ;
2) 3) 4)
Задача 9.Задана функция у=f(x). Найти точки разрыва функции, если они существуют.
9.1. 9.2.
9.3. 9.4.
9.5. 9.6.
9.7. 9.8.
9.9. 9.10.
Дифференциальное исчисление функций одной переменной
Задача 10. Найти производные заданных функций.
10.1. ;
10.2. ;
10.3. ;
10.4. ;
10.5. ;
10.6. ;
10.7. ;
10.8. ;
10.9 ;
10.10. ;
Исследование функций с помощью производных
Задача 11. Исследовать методами дифференциального исчисления функцию у = f(x) и, используя результаты исследования, построить ее график.
11.1. 11.2. у = 11.3.у =
11.4. у = 11.5.у = 11.6.
11.7. 11.8.
11.9. 11.10.
Дифференциальное исчисление функций нескольких переменных
Задача 12.Дана функция и две точки и . Требуется: вычислить значение в точке В; 2) вычислить приближенное значение функции в точке В, исходя из значения функции в точке А и заменив приращение функции при переходе от точки А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом; 4) составить уравнение касательной плоскости к поверхности в точке .
12.1. 161.
12.2. 162.
12.3. 163.
12.4. 164.
12.5. 165.
12.6. 166.
12.7. 167.
12.8. 168.
12.9. 169.
12.10. 170.
Задача 13. Найти наименьшее и наибольшее значения функции z = f(x; y) в замкнутой области Д, заданной системой неравенств. Сделать чертеж.
13.1. .
13.2. .
13.3. .
13.4. .
13.5. .
13.6.
13.7.
13.8. .
13.9. .
13.10. .
Задача 14.Даны функция , точка и вектор .
Найти: 1) в точке А; 2) производную в точке А по направлению вектора .
14.1. .
14.2. .
14.3. .
14.4. .
14.5. .
14.6. .
14.7. .
14.8. .
14.9. .
14.10. .
Задача 15.Экспериментально получены пять значений функции при пяти значениях аргумента, которые записаны в таблице:
Методом наименьших квадратов найти функцию вида , выражающую приближенно (аппроксимирующую) функцию . Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции .
15.1. .
15.2. .
15.3. .
15.4. .
15.5. .
15.6. .
15.7. .
15.8. .
15.9. .
15.10. .
Задача 16.Найти полный дифференциал функции z =f (x ;y) .
16.1. .
16.2. .
16.3. .
16.4. .
16.5. .
16.6. .
16.7. .
16.8. .
16.9. .
16.10. .
Неопределенный и определенный интегралы
Задача 17. Найти неопределенные интегралы. Результаты проверить дифференцированием.
17.1.
17.2.
17.3.
17.4.
17.5.
17.6.
17.7.
17.8.
17.9.
17.10.
Задача 18. Вычислить площадь фигуры, ограниченной параболой и прямой . Сделать чертеж.
18.1. .
18.2. .
18.3. .
18.4. .
18.5. .
18.6. .
18.7. .
18.8. .
18.9. .
18.10. .
Задача 19
19.1.Вычислить площадь фигуры, ограниченной параболой и прямой .
19.2.Вычислить площадь фигуры, ограниченной одной аркой циклоиды и осью Ох.
19.3.Вычислить площадь фигуры, ограниченной кардиоидой
19.4.Вычислить площадь фигуры, ограниченной четырехлепестковой розой .
19.5.Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной параболами .
19.6.Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной полуэллипсом , параболой и осью Оу.
19.7.Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной кривыми .
19.8.Вычислить длину полукубической параболы от точки
А(2;0) до точки В(6;8).
19.9.Вычислить длину кардиоиды .
19.10.Вычислить длину одной арки циклоиды .