Геометрическое представление математических моделей
|
Наглядно можно представить себе только одномерную и двухмерную поверхности отклика, причем в последнем случае удобно пользоваться топографическим способом изображения рельефа поверхности с помощью линий уровня (изолиний), построенных в двумерном факторном пространстве Х. (Рис. 1.4).
Рис. 1.4
Область, в которой определена поверхность отклика, называется областью определения Х*.
Эта область составляет, как правило, лишь часть полного факторного пространства Х (Х* Ì Х) и выделяется с помощью ограничений, наложенных на управляющие переменные xi , записанных в виде равенств
xi = Ci , i = 1,…, m;
fj(x) = Cj , j = 1,…, l
или неравенств
xi min £ xi £ xi max , i = 1,…, k;
fj(x) £ Cj , j = 1,…, n,
При этом функции fj(x) могут зависеть как одновременно от всех переменных, так и от некоторой их части.
Ограничения типа неравенств характеризуют или физические ограничения на процессы в изучаемом объекте (например, ограничения температуры), или технические ограничения, связанные с условиями работы объекта (например, предельная скорость резания).
Возможности исследования моделей существенно зависят от свойств (рельефа) поверхности отклика, в частности, от количества имеющихся на ней «вершин» и ее контрастности.
Количество вершин (впадин) определяет модальность поверхности отклика.
Если в области определения на поверхности отклика имеется одна вершина (впадина), модель называется унимодальной.
Характер изменения функции при этом может быть различным (Рис. 1.5).
W | W | W | |||
x* x | x* x | x* x |
а б в
Рис. 1.5
Модель может иметь разрывы первого рода (см. рис. 1.5. а). Непрерывная унимодальная модель может иметь точки разрыва производной – разрывы второго рода (см. рис. 1.5. б). На рис. 1.5 в показана непрерывно-дифференцируемая унимодальная модель.
Для всех трех случаев, представленных на рис. 1.5, выполняется общее требование унимодальности:
Если W(x*) = extr W, то из условия х1 < x2 < x* (x1 > x2 > x*) следует
W(x1) < W(x2) < W(x*) , если extr – максимум, или W(x1) > W(x2) > W(x*) , если extr – минимум, то есть, по мере удаления от экстремальной точки значение функции W(x) непрерывно падает (растет).
Наряду с унимодальными бывают полимодальные модели (Рис. 1.6).
W | x2 | X1* X2* | ||
x1* x2* x3* x | x1 |
Рис. 1.6
Другим важным свойством поверхности отклика является ее контрастность, показывающая чувствительность результирующей функции к изменению факторов. Контрастность характеризуется величинами производных. Продемонстрируем характеристики контрастности на примере двумерной поверхности отклика (Рис. 1.7). Точка а расположена на «склоне», характеризующем равную контрастность по всем переменным хi (i=1,2); точка b расположена в «овраге», в котором различная контрастность по различным переменным (имеем плохую обусловленность функции); точка с расположена на «плато», на котором низкая контрастность по всем переменным хi говорит о близости экстремума.
Глава 2. Теоретические Математические модели
аналитического типа
Простейшие аналитические модели могут быть заданы явно в виде функции одной или нескольких переменных.
Обычно в виде функций задаются общие законы природы или общие закономерности, полученные в результате интегрирования дифференциальных уравнений. Примером такой модели может служить знаменитая формула К.Э. Циолковского:
,
определяющая приращение скорости ракеты при импульсном сжигании топлива через скорость истечения рабочего тела v и отношение начальной М0 и конечной Mк масс ракеты.
Модель, заданная в явном виде, дает исчерпывающее описание исследуемого объекта. Она позволяет построить зависимость его характеристик от управляющих факторов, взять производные и найти экстремумы модели, определить характеристики модели в окрестности экстремумов и т.д.
Очень удобна графическая интерпретация таких моделей. Однако модели в виде формул могут быть разработаны только для очень простых объектов.