Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из

В процессе создания системы автоматического управления приходится решать одну из двух задач – задачу анализа или задачу синтеза САУ. При анализе САУ определяются ее свойства для заданной структуры с конкретными элементами с заранее известными параметрами. При синтезе САУ, наоборот, имея необходимую информацию об объекте управления, задавая свойства системы, определяют конкретные требования к ней и затем отыскивают условия (структуру, элементы, параметры и т.п.), при которых будут выполняться эти требования. Из-за многовариантности решения задача синтеза является гораздо более сложной, чем задача анализа.

Наиболее эффективным путем анализа и синтеза САУ является использование ее математической модели.

Модель – некоторая система, сохраняющая существенные черты оригинала и допускающая ее исследование физическими или математическими методами. Моделирование — это процесс проведения экспериментов на модели вместо прямых экспериментов на самой системе. В настоящее время моделирование наиболее широко применяемый способ научного познания реальной действительности.

Математическая модель элемента, его части, группы элементов или всей САУ в целом называется динамическим звеном и при этом рассматривается как элемент (рисунок 2.1), для которого задается лишь зависимость, описывающая характер процессов в звене без рассмотрения их физической сущности.

В общем случае эта зависимость имеет вид:

y(t) = F (x(t)). (2.1)

Рисунок 2.1

Одно и то же динамическое звено можно использовать для представления однотипных с точки зрения математического описания процессов в различных элементах – электрических, механических, гидравлических и др. Выражение (2.1) является динамическим звеном или математической моделью элемента, описываемого этим выражением. Изображается звено в виде прямоугольника с входящими и выходящими из него стрелками (см. рисунок 2.1), рядом с которыми записываются обозначения сигналов. Внутри прямоугольника записывается математическая модель этого динамического звена в виде уравнения (2.1) или в каком-либо ином виде. Динамическое звено является звеном направленного действия, т.е. передает сигналы только со входа на выход.

Зависимость (2.1) представляет собой преобразование одного процесса x(t), называемого входным воздействием, в другой – y(t), называемый реакцией звена, в соответствии с особенностями, определяемыми внутренними свойствами элемента. Подобное преобразование называется преобразованием “вход-выход” и характеризует передаточные свойства звена.

Наиболее общей и полной формой математического описания систем и отдельных элементов является дифференциальное уравнение

(2.2)

где x(t) и y(t) – соответственно входная и выходная величины; a0,…,an; b0,…,bm– постоянные коэффициенты, зависящие от особенностей описываемых процессов; n и m – целые числа.

Уравнение (2.2), описывающее процессы при различных входных воздействиях, называется уравнением динамики

В теории автоматического управления широкое применение получил способ математического описания, основанный на понятии передаточной функции. Передаточная функция является наиболее удобной формой записи линейных уравнений звеньев и систем. При этом используются две формы передаточной функции – в операторном (символическом) виде и в изображениях Лапласа.

Для получения передаточной функции в операторном виде в дифференциальном уравнении (2.2) необходимо произвести замену (p – оператор дифференцирования).

Передаточная функция

Действия над дифференциальными уравнениями упрощаются при использовании преобразования Лапласа. Кроме того, преобразование Лапласа позволяет ввести понятие передаточной функции.

Смысл преобразования Лапласа заключается в том, что функции x(t) вещественной переменной t ставится в соответствие функция x(p) комплексной переменной p=α+jω

x(t) называется оригиналом, x(p) –изображением по Лапласу. Операция преобразования по Лапласу записывается следующим образом:

Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru

L – интегральный оператор Лапласа, определяемый следующим образом

Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru (2.3)

Основные свойства преобразования Лапласа

1. Запаздыванию аргумента на τ соответствует умножение изображения на Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru (теорема смещения оригинала), т.е.

L{x(t-t)}=x(p) e-pt (2.4)

Это свойство позволяет находить изображения дифференциальных уравнений с запаздывающим аргументом.

2. Дифференцированию оригинала при нулевых начальных условиях соответствует умножение изображения на р:

Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru (2.5)

поэтому формально переменную рможно считать символом дифференцирования. В статике р=0.

В общем случае

Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru (2.6)

Поскольку интегрирование есть действие обратное дифференцированию, интегрированию оригинала соответствует деление изображения на р:

Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru

Свойство (2.6) позволяет записать изображение по Лапласу дифференциального уравнения (2.2):

(an*pn + an-1*pn-1 +….+ a1*p +1)*y(p)= (bm*pm + …+b0) *x(p) (2.7)

Таким образом, изображение по Лапласу дифференциального уравнения (2.2) представляет алгебраическое выражение, которое можно разрешить относительно изображения выходной переменной у(р), а затем снова перейти от изображения к оригиналу. Эта операция называется

обратным преобразованием Лапласа и обозначается оператором L-1:

Обратное преобразование Лапласа определяется интегралом

Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru

Отношение изображения по Лапласу выходной переменной к изображению входной переменной при нулевых начальных условиях называется передаточной функцией

Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru

или, поскольку Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru , передаточную функцию можно записать в виде:

Теоретический материал. В процессе создания системы автоматического управления приходится решать одну из - student2.ru (2.8)

где А(р) и В(р) - полиномы от р порядков n и m соответственно.

Передаточная функция звена или системы в операторном виде представляет собой отношение дух полиномов – оператора воздействия (полином в числителе) и собственного оператора (полином в знаменателе). Полином знаменателя передаточной функции называется характеристическим полиномом.

Передаточная функция полностью характеризует динамические, а также статические свойства системы. Зная передаточную функцию системы и вид воздействия, можно определить переходный процесс на выходе системы.

Динамические свойства системы определяет характеристическое уравнение, которое получается при приравнивании к нулю полинома знаменателя (характеристического полинома) передаточной функции.

Нулями передаточной функции называются корни уравнения, полученного приравниванием к нулю полинома числителя передаточной функции, т.е. значения корней, при которых передаточная функция обращается в нуль. Полюсами передаточной функции называются корни характеристического уравнения, т.е. такие значения корней, при которых передаточная функция обращается в бесконечность.

Наши рекомендации