Понятие стохастич. корреляционной зависимости, регрессии. Задачи корреляционного и регрессионного анализа
Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения другой. В частности, статистическая зависимость проявляется в том, что при изменении одной из величин изменяется среднее значениедругой – в этом случае статистическая зависимость называется корреляционной.
При рассмотрении взаимосвязей, как правило, рассматривают одну из величин как независимую (объясняющую), а другую как зависимую (объясняющую). При этом изменение первой из них может служить причиной изменения другой. Например, рост дохода ведет к увеличению потребления; рост цены – к снижению спроса; снижение процентной ставки увеличивает инвестиции и т.д. Подобная зависимость не является однозначной в том смысле, что каждому конкретному значению объясняющей переменой может соответствовать не одно, а множество значений из некоторой области. Другими словами, каждому конкретному значению X соответствует некоторое вероятностное распределение зависимой переменной. Поэтому анализируют, как объясняющая переменная (или переменные) влияет (или влияют) на зависимую переменную «в среднем». Зависимость такого типа, выражаемая соотношением:
называется функцией регрессии Y на X. При рассмотрении зависимости двух случайных величин говорят о парной регрессии.
Зависимость нескольких переменных, выражаемую функцией , называют множественной регрессией.
Под регрессией понимается функциональная зависимость между объясняющими переменными и условным математическим ожиданием (средним значением) зависимой переменной Y, которая строится с целью предсказания (прогнозирования) среднего значения Y при фиксированных значениях независимых переменных.
Так как реальные значения зависимой переменной не всегда совпадают с ее средним значением и могут быть различными при данном X (или ), зависимость должна быть дополнена некоторым слагаемым , которое, по существу, является случайной величиной. Получающиеся в результате соотношения:
или
называются регрессионными моделями (или уравнениями).
Корреляционно-регрессионный анализ включает в себя измерение тесноты и направления связи, а также установление аналитического выражения связи. Задачи корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов, оказывающих наиб. влияние на результативный признак. Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной.