Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной

1) Математическое ожидание постоянной величины равно самой постоянной.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

2) Постоянный множитель можно выносить за знак математического ожидания.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

Это свойство справедливо для произвольного числа случайных величин.

4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится п независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в п независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

Однако математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.

Определение. Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

3. Вычисление дисперсии

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

Свойства дисперсии

1) Дисперсия постоянной величины равна нулю.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

4) Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

Справедливость этого равенства вытекает из свойства 2.

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

Свойства математического ожидания. 1) Математическое ожидание постоянной величины равно самой постоянной - student2.ru

Наши рекомендации