Матричная интерпретация алгоритма
Для n работников и работ, дана матрица n×n (матрица стоимости), задающая стоимость выполнения каждой работы каждым работником. Найти минимальную стоимость выполнения работ, такую что каждый работник выполняет ровно одну работу, а каждую работу выполняет ровно один работник.
В дальнейшем мы под назначением понимаем соответствие между работниками и работами, имеющее нулевую стоимость, после того как мы произвели трансформации, влияющие лишь на общую стоимость работ.
Прежде всего запишем задачу в матричной форме:
где a, b, c, d — работники, которые должны выполнить работы 1, 2, 3, 4. Коэффициенты a1, a2, a3, a4 обозначают стоимость выполнения работником «a» работ 1, 2, 3, 4 соответственно. Аналогичный смысл имеют остальные символы. Матрица квадратная, поэтому каждый работник может выполнить только одну работу.
Шаг 1
Уменьшаем элементы построчно. Находим наименьший из элементов первой строки (а1, а2, а3, а4), и вычитаем его из всех элементов первой строки. При этом хотя бы один из элементов первой строки обнулится. То же самое выполняем и для всех остальных строк. Теперь в каждой строке матрицы есть хотя бы один ноль. Иногда нулей уже достаточно, чтобы найти назначение. Пример показан в таблице. Красные нули обозначают назначенные работы.
a2' | a4' | ||
b1' | b2' | b3' | |
c2' | c3' | c4' | |
d1' | d3' | d4' |
При большом количестве нулей для поиска назначения (нулевой стоимости) можно использовать алгоритм нахождения максимального паросочетания двудольных графов, например алгоритм Хопкрофта-Карпа. Кроме того, если хотя бы в одном столбце нет нулевых элементов, то назначение невозможно.
Шаг 2
Часто на первом шаге нет назначения, как, например, в следующем случае:
a2' | a3' | a4' | |
b1' | b2' | b3' | |
c2' | c3' | c4' | |
d1' | d3' | d4' |
Задача 1 может быть эффективно (за нулевую стоимость) выполнена как работником a, так и работником c, зато задача 3 не может быть эффективно выполнена никем.
В таких случаях мы повторяем шаг 1 для столбцов и вновь проверяем, возможно ли назначение.
Шаг 3
Во многих случаях мы достигнем желаемого результата уже после шага 2. Но иногда это не так, например:
a2' | a3' | a4' | |
b1' | b2' | b3' | |
c2' | c3' | c4' | |
d1' | d4' |
Если работник d выполняет работу 2, некому выполнять работу 3, и наоборот.
В таких случаях мы выполняем процедуру, описанную ниже.
Сначала, используя любой алгоритм поиска максимального паросочетания в двудольном графе, назначаем как можно больше работ тем работникам, которые могут их выполнить за нулевую стоимость. Пример показан в таблице, назначенные работы выделены красным.
a2' | a3' | a4' | |
b1' | b2' | b3' | |
c2' | c3' | c4' | |
d1' | d4' |
Отметим все строки без назначений (строка 1). Отметим все столбцы с нулями в этих строках (столбец 1). Отметим все строки с «красными» нулями в этих столбцах (строка 3). Продолжаем, пока новые строки и столбцы не перестали отмечаться.
× | ||||
a2' | a3' | a4' | × | |
b1' | b2' | b3' | ||
c2' | c3' | c4' | × | |
d1' | d4' |
Теперь проводим линии через все отмеченные столбцы и неотмеченные строки.
× | ||||
a2' | a3' | a4' | × | |
b1' | b2' | b3' | ||
c2' | c3' | c4' | × | |
d1' | d4' |
Все эти действия преследовали лишь одну цель: провести наименьшее количество линий (вертикалей и горизонталей), чтобы покрыть все красные нули. Можно было воспользоваться любым другим методом вместо описанного.
Шаг 4
Из непокрытых линиями элементов матрицы (в данном случае это a2', a3', a4', c2', c3', c4') найти наименьший. Вычесть его из всех не отмеченных строк и прибавить ко всем пересечениям отмеченных строк и столбцов. Так, например, если наименьший элемент из перечисленных равен а2', мы получим
× | |||||
a3'-а2' | a4'-a2' | × | |||
b1'+a2' | b2' | b3' | |||
c2'-а2' | c3'-а2' | c4'-а2' | × | ||
d1'+a2' | d4' |
Повторять процедуру (шаги 1-4) до тех пор, пока назначение не станет возможным.
Реализация на python.
В листинге 3 приводится пример реализации решения примера, описанного выше, на языке программирования python.
Листинг 3.
def improveLabels(val):
""" change the labels, and maintain minSlack.
"""
for u in S:
lu[u] -= val
for v in V:
if v in T:
lv[v] += val
else:
minSlack[v][0] -= val
def improveMatching(v):
""" apply the alternating path from v to the root in the tree.
"""
u = T[v]
if u in Mu:
improveMatching(Mu[u])
Mu[u] = v
Mv[v] = u
def slack(u,v): return lu[u]+lv[v]-w[u][v]
def augment():
""" augment the matching, possibly improving the lablels on the way.
"""
while True:
# select edge (u,v) with u in S, v not in T and min slack
((val, u), v) = min([(minSlack[v], v) for v in V if v not in T])
assert u in S
if val>0:
improveLabels(val)
# now we are sure that (u,v) is saturated
assert slack(u,v)==0
T[v] = u # add (u,v) to the tree
if v in Mv:
u1 = Mv[v] # matched edge,
assert not u1 in S
S[u1] = True # ... add endpoint to tree
for v in V: # maintain minSlack
if not v in T and minSlack[v][0] > slack(u1,v):
minSlack[v] = [slack(u1,v), u1]
else:
improveMatching(v) # v is a free vertex
return
def maxWeightMatching(weights):
""" given w, the weight matrix of a complete bipartite graph,
returns the mappings Mu : U->V ,Mv : V->U encoding the matching
as well as the value of it.
"""
global U,V,S,T,Mu,Mv,lu,lv, minSlack, w
w = weights
n = len(w)
U = V = range(n)
lu = [ max([w[u][v] for v in V]) for u in U] # start with trivial labels
lv = [ 0 for v in V]
Mu = {} # start with empty matching
Mv = {}
while len(Mu)<n:
free = [u for u in V if u not in Mu] # choose free vertex u0
u0 = free[0]
S = {u0: True} # grow tree from u0 on
T = {}
minSlack = [[slack(u0,v), u0] for v in V]
augment()
# val. of matching is total edge weight
val = sum(lu)+sum(lv)
return (Mu, Mv, val)
# a small example
#print maxWeightMatching([[1,2,3,4],[2,4,6,8],[3,6,9,12],[4,8,12,16]])
# read from standard input a line with n
# then n*n lines with u,v,w[u][v]
n = 3 #Размер матрицы
w = [[1, 2, 4], #Матрица весов
[2, 5, 3],
[6, 7, 8]]
print(maxWeightMatching(w))
Входные данные:
n = 3 #Размер матрицы
w = [[1, 2, 4], #Матрица весов
[2, 5, 3],
[6, 7, 8]]
Выходные данные:
({0: 2, 1: 1, 2: 0}, {0: 2, 1: 1, 2: 0}, 15)
Вывод.
Матричное представление графов – наиболее универсальное представление графов в памяти эвм, для дальнейшей их обработки и решения разного рода задач.
Список использованной литературы.
Литература:
Свами М., Тхуласираман К. Графы, сети и алгоритмы. М.: Мир, 1984
Хаггарти Р. Дискретная математика для программистов Москва: Техносфера, 2003 г. - 320с.
Интернет-ресурсы:
Википедия - свободная общедоступная мультиязычная универсальная интернет-энциклопедия, реализованная на принципах Вики. / http://wikipedia.org (Дата обращения 23.12.2013)
Приложение.
Ниже приведены исходные коды всех примеров, проденмонстрированных выше.
#Example1.py
from operator import itemgetter
import networkx as nx
import matplotlib.pyplot as plt
G = nx.Graph()
G.add_edge(1,2);
G.add_edge(2,3);
G.add_edge(3,1);
nx.draw(G, node_color = 'b', width = 5, with_labels = False)
plt.show()
#deijkstra.py
import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()
G.add_nodes_from(range(1, 7))
for i in range(1,10):
G.add_edge(i, i-1)
for i in range(1,10):
if(i+5<10):
G.add_edge(i, i+5, weight = i*0.5+2)
nx.draw(G, node_color = 'm', font_color = 'w')
plt.show()
print(nx.dijkstra_path(G, 2, 8))
#mankres.py
#!/usr/bin/python
# Kuhn-Munkres, The hungarian algorithm. Complexity O(n^3)
# Computes a max weight perfect matching in a bipartite graph
# for min weight matching, simply negate the weights.
""" Global variables:
n = number of vertices on each side
U,V vertex sets
lu,lv are the labels of U and V resp.
the matching is encoded as
- a mapping Mu from U to V,
- and Mv from V to U.
The algorithm repeatedly builds an alternating tree, rooted in a
free vertex u0. S is the set of vertices in U covered by the tree.
For every vertex v, T[v] is the parent in the tree and Mv[v] the
child.
The algorithm maintains minSlack, s.t. for every vertex v not in
T, minSlack[v]=(val,u1), where val is the minimum slack
lu[u]+lv[v]-w[u][v] over u in S, and u1 is the vertex that
realizes this minimum.
Complexity is O(n^3), because there are n iterations in
maxWeightMatching, and each call to augment costs O(n^2). This is
because augment() makes at most n iterations itself, and each
updating of minSlack costs O(n).
"""
def improveLabels(val):
""" change the labels, and maintain minSlack.
"""
for u in S:
lu[u] -= val
for v in V:
if v in T:
lv[v] += val
else:
minSlack[v][0] -= val
def improveMatching(v):
""" apply the alternating path from v to the root in the tree.
"""
u = T[v]
if u in Mu:
improveMatching(Mu[u])
Mu[u] = v
Mv[v] = u
def slack(u,v): return lu[u]+lv[v]-w[u][v]
def augment():
""" augment the matching, possibly improving the lablels on the way.
"""
while True:
# select edge (u,v) with u in S, v not in T and min slack
((val, u), v) = min([(minSlack[v], v) for v in V if v not in T])
assert u in S
if val>0:
improveLabels(val)
# now we are sure that (u,v) is saturated
assert slack(u,v)==0
T[v] = u # add (u,v) to the tree
if v in Mv:
u1 = Mv[v] # matched edge,
assert not u1 in S
S[u1] = True # ... add endpoint to tree
for v in V: # maintain minSlack
if not v in T and minSlack[v][0] > slack(u1,v):
minSlack[v] = [slack(u1,v), u1]
else:
improveMatching(v) # v is a free vertex
return
def maxWeightMatching(weights):
""" given w, the weight matrix of a complete bipartite graph,
returns the mappings Mu : U->V ,Mv : V->U encoding the matching
as well as the value of it.
"""
global U,V,S,T,Mu,Mv,lu,lv, minSlack, w
w = weights
n = len(w)
U = V = range(n)
lu = [ max([w[u][v] for v in V]) for u in U] # start with trivial labels
lv = [ 0 for v in V]
Mu = {} # start with empty matching
Mv = {}
while len(Mu)<n:
free = [u for u in V if u not in Mu] # choose free vertex u0
u0 = free[0]
S = {u0: True} # grow tree from u0 on
T = {}
minSlack = [[slack(u0,v), u0] for v in V]
augment()
# val. of matching is total edge weight
val = sum(lu)+sum(lv)
return (Mu, Mv, val)
# a small example
#print maxWeightMatching([[1,2,3,4],[2,4,6,8],[3,6,9,12],[4,8,12,16]])
# read from standard input a line with n
# then n*n lines with u,v,w[u][v]
n = 3 #Размер матрицы
w = [[1, 2, 4], #Матрица весов
[2, 5, 3],
[6, 7, 8]]
print(maxWeightMatching(w))
#tsp.py
import networkx as nx
import matplotlib.pyplot as plt
import numpy
G = nx.Graph();
for i in range(1,6):
G.add_node(i)
G.add_edge(1, 2, node_color = 'm', weight = 2) # Параметр weight отвечает за вес ребра
G.add_edge(1, 3, node_color = 'm', weight = 1)
G.add_edge(1, 4, node_color = 'm', weight = 20)
G.add_edge(1, 5, node_color = 'm', weight = 10)
G.add_edge(1, 6, node_color = 'm', weight = 15)
G.add_edge(5, 4, node_color = 'm', weight = 1)
G.add_edge(1, 6, node_color = 'm', weight = 10)
G.add_edge(6, 1, node_color = 'm', weight = 4)
G.add_edge(2, 3, node_color = 'm', weight = 10)
G.add_edge(2, 5, node_color = 'm', weight = 5)
G.add_edge(2, 6, node_color = 'm', weight = 20)
G.add_edge(3, 6, node_color = 'm', weight = 6)
G.add_edge(4, 2, node_color = 'm', weight = 15)
G.add_edge(4, 3, node_color = 'm', weight = 40)
G.add_edge(5, 6, node_color = 'm', weight = 10)
G.add_edge(3, 5, node_color = 'm', weight = 3)
nx.draw(G) #Отрисовка графа
plt.show()
adjacency_matrix = nx.adjacency_matrix(G)
print('Матрица стоимости')
print(adjacency_matrix) #Вывод матрицы весов
print(nx.shortest_path(G, 1, 4)) #Вывод самого короткого пути
print(nx.dijkstra_path(G, 1, 4)) #Вывод самого "выгодного" пути