Расчет эмпирических функций

Используя данные сформированного статистического ряда, определяются статистические оценки показателей надежности, т. е. эмпирические функции:

- функция распределения отказов (оценка ВО)

Расчет эмпирических функций - student2.ru

- функция надежности (оценка ВБР)

Расчет эмпирических функций - student2.ru

Расчет эмпирических функций - student2.ru

Рис. 5.3

- плотность распределения отказов (оценка ПРО)

Расчет эмпирических функций - student2.ru

- интенсивность отказов (оценка ИО)

Расчет эмпирических функций - student2.ru

Расчет эмпирических функций - student2.ru

Рис. 5.4

Расчет эмпирических функций - student2.ru

Рис. 5.5

На рис. 5.3, 5.4, 5.5 приведены соответственно графики статистических оценок Расчет эмпирических функций - student2.ru (t),

Правила построения графиков ясны из приведенных выше расчетных формул. Каждый из графиков имеет свой масштаб.

5.2.2.3 Расчет статистических оценок числовых характеристик

Для расчета статистических оценок числовых характеристик можно воспользоваться данными сформированного статистического ряда.

Оценки характеристик определяются:

- оценка средней наработки до отказа (статистическое среднее наработки):

Расчет эмпирических функций - student2.ru

- оценка дисперсии наработки до отказа (эмпирическая дисперсия наработки):

Расчет эмпирических функций - student2.ru

где Расчет эмпирических функций - student2.ru – середина i-го интервала наработки, т. е. среднее значение наработки в интервале.

Оценка СКО Расчет эмпирических функций - student2.ru

Целесообразно рассчитать оценки и некоторых вспомогательных характеристик рассеивания случайной величины T:

- выборочный коэффициент асимметрии наработки до отказа

Расчет эмпирических функций - student2.ru

- выборочный эксцесс наработки до отказа

Расчет эмпирических функций - student2.ru

Эти характеристики используются для выбора аппроксимирующей функции.

Так коэффициент асимметрии является характеристикой «скошенности» распределения, например, если распределение симметрично относительно МО, то A = 0.

На рис. 5.6, а распределение f2(t) имеет положительную асимметрию A > 0, а f3(t) – отрицательную A < 0.

Эксцесс характеризует «крутость» (остро- или плосковершинность) распределения.

Для нормального распределения E = 0.

Кривые f(t), более островершинные по сравнению с нормальной, имеют E > 0, а наоборот – более плосковершинные, E < 0 (рис.5.6, б).

5.2.2.4. Выбор закона распределения

Выбор закона распределения состоит в подборе аналитической функции наилучшим образом аппроксимирующей эмпирические функции надежности.

Расчет эмпирических функций - student2.ru

Рис. 5.6

Выбор, в значительной мере, процедура неопределенная и во многом субъективная, при этом многое зависит от априорных знаний об объекте и его свойствах, условиях работы, а также анализа вида графиков Расчет эмпирических функций - student2.ru (t), Расчет эмпирических функций - student2.ru (t), Расчет эмпирических функций - student2.ru (t).

Очевидно, что выбор распределения будет зависеть, прежде всего, от вида эмпирической функции ПРО Расчет эмпирических функций - student2.ru (t), а также от вида - Расчет эмпирических функций - student2.ru (t). Итак, выбор закона распределения носит характер принятия той или иной гипотезы.

Предположим, что по тем или иным соображениям, выбран гипотетический закон распределения, заданный теоретической ПРО

Расчет эмпирических функций - student2.ru

где a, b, c, … - неизвестные параметры распределения.

Требуется подобрать эти параметры так, чтобы функция f(t) наилучшим образом сглаживала ступенчатый график Расчет эмпирических функций - student2.ru (t). При этом используется следующий прием: параметры a, b, c, … выбираются с таким расчетом, чтобы несколько важнейших числовых характеристик теоретического распределения были равны соответствующим статистическим оценкам.

На графике вместе с Расчет эмпирических функций - student2.ru (t) строится теоретическая ПРО f(t), что позволяет визуально оценить результаты аппроксимации (расхождения между Расчет эмпирических функций - student2.ru (t) и f(t). Поскольку эти расхождения неизбежны, то возникает вопрос: объясняются ли они случайными обстоятельствами, связанными с тем, что теоретическое распределение выбрано ошибочным? Ответ на этот вопрос дает расчет критерия согласия.

5.2.2.5 Расчет критерия согласия

Критерий согласия – это критерий проверки гипотезы о том, что случайная величина T, представленная своей выборкой, имеет распределение предполагаемого типа.

Проверка состоит в следующем. Рассчитывается критерий, как некоторая мера расхождения теоретического и эмпирического распределений, причем эта мера является случайной величиной.

Чем больше мера расхождения, тем хуже согласованность эмпирического распределения с теоретическим, т. е. меньше мала, то гипотезу о выборе закона распределения следует отвергнуть, как мало правдоподобную.

В противном случае – экспериментальные данные не противоречат принятому распределению.

Из известных критериев наиболее применяемый критерий согласия Расчет эмпирических функций - student2.ru 2 (хи-квадрат) Пирсона.

Проверка согласованности распределений по критерию Расчет эмпирических функций - student2.ru 2 производится следующим образом:

- рассчитывается критерий Расчет эмпирических функций - student2.ru 2 (мера расхождения)

Расчет эмпирических функций - student2.ru

где Расчет эмпирических функций - student2.ru – теоретическая частота (вероятность) попадания случайной величины в интервал [ti, ti + Расчет эмпирических функций - student2.ru t];

- определяется число степеней свободы R = k – L ,

где L – число независимых условий, наложенных на частоты Расчет эмпирических функций - student2.ru i , например:

а) условие Расчет эмпирических функций - student2.ru ;

б) условие совпадения Расчет эмпирических функций - student2.ru ;

в) условие совпадения Расчет эмпирических функций - student2.ru = D и т. д.

Чаще всего L = 3. Чем больше число степеней свободы, тем больше случайная величина Расчет эмпирических функций - student2.ru 2 подчиняется распределению Пирсона;

- по рассчитанным Расчет эмпирических функций - student2.ru 2 и R определяется вероятность P того, что величина, имеющая распределение Пирсона с R степенями свободы, превзойдет рассчитанное значение Расчет эмпирических функций - student2.ru 2.

Ответ на вопрос: насколько мала должна быть вероятность P, чтобы отбросить гипотезу о выборе того или иного закона распределения – во многом неопределенный.

На практике, если P < 0,1, то рекомендуется подыскать другой закон распределения.

В целом, с помощью критерия согласия, можно опровергнуть выбранную гипотезу, если же P достаточно велика, то это не может служить доказательством правильности гипотезы, а указывает лишь на то, что гипотеза не противоречит данным эксперимента.

Контрольные вопросы:

1. Что представляет математическая модель, и для каких целей она используется в задачах надежности?

2. Из каких условий выбирается закон распределения наработки до отказа объекта?

3. В чем заключается постановка задачи при испытаниях объектов на надежность?

4. Что представляет собой процедура формирования статистического ряда по результатам испытаний?

5. Какие эмпирические функции рассчитываются при обработке результатов испытаний?

6. В чем заключается выбор закона распределения наработки до отказа по результатам испытаний?

7. Что представляет собой критерий согласия?


Наши рекомендации