Исследование статистических закономерностей биномиального распределения методом моделирования на эвм
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Федеральное государственное образовательное учреждение высшего профессионального образования
«Чувашский государственный университет имени И.Н. Ульянова»
МОЛЕКУЛЯРНАЯ ФИЗИКА.
Лабораторные работы
Чебоксары
УДК 53(075.8) Составители:
А.Л. Иванов
О.В. Филиппова
Молекулярная физика: Лабораторные работы.
/Сост. А.Л. Иванов, О.В. Филиппова; Чуваш. ун-т. Чебоксары, 2013., с.84.
Содержат лабораторные работы раздела курса общей физики «Молекулярная физика», основные формулы, вопросы к лабораторным работам, список используемой литературы. Для студентов I курса физико-технического факультета.
Отв. редактор профессор Г.Г. Телегин
Утверждено Методическим советом университета
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Федеральное государственное образовательное учреждение высшего
профессионального образования
«Чувашский государственный университет имени И.Н. Ульянова»
МОЛЕКУЛЯРНАЯ ФИЗИКА.
Лабораторные работы
Чебоксары
ОГЛАВЛЕНИЕ
I. Лабораторная работа №2. Исследование статистических закономерностей биномиального распределения методом моделирования на ЭВМ. 6
II. Лабораторная работа № 4. Измерение теплоемкости металлов и параметров естественной конвекции методом охлаждения. 19
III. Лабораторная работа № 5 Определение отношения удельных теплоемкостей газов методом адиабатического расширения. 26
IV. Лабораторная работа №6. Определение отношения удельных теплоемкостей по скорости звука в газе. 31
V. Лабораторная работа № 7. Определение коэффициента теплопроводности воздуха. 35
VI. Лабораторная работа № 10. Определение коэффициента внутреннего трения газа капилярным вискозиметром. 40
VII. Лабораторная работа № 12. Определение коэффициента внутреннего трения по методу стокса. 43
VIII. Лабораторная работа № 21. Изучение критического состояния вещества. 55
IX. Лабораторная работа № 23. Определение теплоты испарения жидкости по зависимости давления насыщенного пара от температуры.. 60
Приложение 1……………………………………………….…….74
Приложение 2…………………………………………………......75
Приложение 3………………………………………..……………77
Молекулярная физика
Лабораторные работы.
Отв. за выпуск Л.Г. Григорьева
Подписано в печать 4.10.2011г. Формат 60 80/16. Бумага газетная. Офсетная печать. Гарнитура Таймс. Усл.печ. л. 3,25. Усл.-изд. л.3,0. Тираж 100 экз. Заказ №444 .
Чувашский государственный университет
Типография университета
428015 Чебоксары, Московский просп.15
I. Лабораторная работа №2.
ИССЛЕДОВАНИЕ СТАТИСТИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ БИНОМИАЛЬНОГО РАСПРЕДЕЛЕНИЯ МЕТОДОМ МОДЕЛИРОВАНИЯ НА ЭВМ.
ЦЕЛЬ РАБОТЫ: 1. Ознакомление с функциями распределения.
2. Исследование статистических закономерностей биномиального распределения методом моделирования на ЭВМ рассеяния горошин на системе решеток.
ОБОРУДОВАНИЕ: компьютер, программа MF2.
1.ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ.
1.1 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ.
Результат любого случайного, то есть заранее достоверно не предсказуемого эксперимента можно охарактеризовать качественно и количественно. Качественный результат случайного эксперимента - это случайное событие, которое может произойти, или не произойти: например, тарелка при падении на пол разбилась, либо не разбилась. Вероятность случайного события – это предел отношения числа экспериментов, в результате которых это событие произошло, к общему числу экспериментов, когда общее число экспериментов стремиться к бесконечности.
Любая количественная характеристика, которая в результате случайного эксперимента (измерения) может принять одно из некоторого множества значений, - это случайная величина. Обозначим: X - случайная величина, x – её возможные значения.
Каждая случайная величина полностью определяется своей функцией распределения. Функцией распределения случайной величины называется функция F(x), равная вероятности того, что в результате эксперимента эта величина примет значение меньшее, или равное x.
Функция распределения F(x) определена на всей числовой оси и является неубывающей функцией x, возрастающей от F(xmin) = 0 на нижней границе xmin возможных значений x до F(xmax) = 1 на верхней границе xmax.
Выполнив N экспериментов можно получить набор из N значений xj случайной величины X, где j=1, 2,…, N. Этот набор так же является случайным, и называется случайной выборкойслучайной величины X.
По случайной выборке можно найти среднее арифметическое значение <x> для этой выборки (среднее выборочное):
< x >= (I.1)
Поскольку среднее значение вычисляется по случайным значениям xj, оно само является случайной величиной. Однако, когда число экспериментов N стремится к бесконечности, <x> стремится к некоторому пределу, который называется математическим ожиданием x= случайной величины X
(I.2)
Набор результатов такого бесконечного числа экспериментов называется генеральной выборкойслучайной величины X.
Результаты xj экспериментов случайным образом отличаются от . Характеристиками величины их разброса в случайной выборке из N экспериментов являются среднеквадратичное отклонение σx= σ случайной величины X от математического ожидания и дисперсия Dx= D =σ2:
(I.3)
Если математическое ожидание неизвестно, вместо него можно использовать среднее значение <x>, найденное по значениям xj из этой же случайной выборки, но при этом вместо N в формуле нужно делить на N-1:
(I.4)
Среднеквадратичное отклонение σ, вычисленное по случайной выборке, тоже будет случайной величиной. Достоверное значение σ можно получить только по генеральной выборке, то есть при N→∞.
Если провести множество серий измерений по N измерений в каждой серии, и каждую из этих серий считать одной случайной выборкой, то по каждой случайной выборке по формуле (I.1) можно вычислить среднее арифметическое значение <x>. Эти <x> будут случайным образом отличатся и друг от друга, и от математического ожидания . При этом в суммах в формуле (I.1) будут присутствовать слагаемые xj, как превышающие , так и меньшие чем . В результате произойдет частичная компенсация их случайных отклонений, и средние арифметические значения <x> окажутся значительно ближе к математическому ожиданию , чем результаты отдельных измерений xj.
Можно доказать, что среднеквадратичное отклонение σ<x> среднего арифметического значения <x> от математического ожидания обратно пропорционально , а для большого числа серий по N измерений выполняется соотношение:
(I.5)
То есть среднее арифметическое по выборке из N измерений в раз точнее результата одного измерения.
1.2 ДИСКРЕТНАЯ И НЕПРЕРЫВНАЯ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ.
Дискретная случайная величина может принимать значения из некоторого дискретного числового множества. Например, число очков, выпавших при бросании кубика, принимает значения из дискретного числового множества {1, 2, 3, 4, 5, 6}. На числовой оси разрешенные (возможные) значения отображаются точками, отделенными друг от друга запрещенными промежутками. При этом весь интервал разрешенных значений можно разбить на такие маленькие кусочки, в каждом из которых будет не более одного разрешенного значения. Эти значения можно пронумеровать в порядке возрастания: x1 < x2 < … < xi < … xn, где n – конечное или бесконечное число возможных значений. Каждое из этих значений имеет, соответственно, свою вероятность: p1, p2, …, pi … Совокупность значений pi =p( xi) называется распределением дискретной случайной величины(не путать с функцией распределения!). Функция распределения F(x) дискретной случайной величины ступенчатая, скачком изменяющаяся на pi при переходе через каждое xi. Для любого данного значения x она равна сумме вероятностей pi всех возможных значений xi ≤ x.
Распределение дискретной случайной величины подчиняется условию нормировки – сумма вероятностей всех возможных значений равна 1:
(I.6)
Зная распределение дискретной случайной величины, можно найти математическое ожидание и дисперсию:
, (I.7),
(I.8)
Непрерывная случайная величина может принимать любые значения в некотором разрешенном интервале xmin ≤ x ≤ xmax. Например, вес случайно выбранного человека. На числовой оси на сколь угодно маленьком промежутке разрешенного интервала имеется бесконечно большое число возможных значений непрерывной случайной величины, и вероятность получения любого заданного значения х равна нулю. Поэтому для непрерывных случайных величин вместо вероятности Pi получения отдельного значения xi используют вероятность ΔP(x, Δx) получения любого значения случайной величины в интервале от x до x + Δx.
Предел отношения:
(I.9)
называется плотностью вероятности случайной величины x.
В термодинамике плотность вероятности принято называть функцией распределения.
Чтобы плотность вероятности f(x) не путать с другой функцией распределения F(x), их обозначают разными буквами: f(x) и F(x). Друг с другом они связаны соотношениями:
, (I.10)
Поэтому F(x) иногда называют интегральной функцией распределения, а f(x) - дифференциальной функцией распределения.
Если известна функция f(x), или F(x), то можно найти вероятность получения значения случайной величины X в любом интервале от x1 до x2:
(I.11)
Плотность вероятности f(x) подчиняется условию нормировки (сравните с I.6):
(I.12)
Примером функции распределения непрерывной случайной величины х в интервале от - ∞ до + ∞ является функция нормального распределения Гаусса:
(I.13).
Функция Гаусса имеет максимум при х = µ и монотонно уменьшается, стремясь к нулю, при удалении от точки х = µ .
Функция Гаусса реализуется в тех случаях, когда значение случайной величины х зависит от большого числа независимых случайных факторов. Функцией Гаусса описывается, например, распределение молекул идеального газа по компонентам скоростей Vx, Vy, Vz.
Зная функцию распределения, можно найти математическое ожидание и дисперсию (сравните с I.14, I.15):
, (I.14),(I.15).
2. ОПИСАНИЕ ИСПОЛЬЗУЕМОЙ МОДЕЛИ.
2.1 ОБЩЕЕ ОПИСАНИЕ.
В компьютерном эксперименте по экрану монитора из источника, находящегося в левой части экрана, движется поочередно слева направо заданное число горошин, проходя через систему из m вертикально расположенных решеток. На каждой решетке горошины испытывают случайное отклонение по вертикали на -1(вверх) или на +1(вниз) с равной вероятностью p=0,5. Пройдя через m решеток, горошина m1 раз испытывает смещение на +1 и m2 раза на -1, причем m1+ m2= m. При этом заранее неизвестно, сколько раз и на каких решетках произойдет у данной горошины смещение в ту или другую сторону. Суммарное смещение горошины:
х = m1*(+1) +m2*(-1) =m1- m2 может принимать m+1 различных случайных значений в интервале от – m до + m. При этом, если m четно (нечетно), то и все возможные значения х четны (нечетны).
После решеток горошины попадают в ячейки, находящиеся в правой части экрана. Каждому возможному значению смещения х соответствует своя ячейка. Общее число горошин и число горошин, попавших в каждую ячейку, подсчитываются и печатаются на экране монитора в течение всего эксперимента. После завершения эксперимента компьютер производит обработку полученных результатов и выводит их на экран в виде таблиц и графиков.
2.2 СТАТИСТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ДЛЯ ЧИСЛА ГОРОШИН В ОДНОЙ ПРОИЗВОЛЬНОЙ ЯЧЕЙКЕ.
Введем следующие обозначения: n - общее число горошин, участвовавших в данном эксперименте, ni, (где i=1,2,3,…,m+1) - число горошин, испытавших смещение на x = xi и попавших в i-ю ячейку, yi =ni/n - доля горошин, попавших в i-ю ячейку.
Число горошин ni и доля горошин yi , попавших в i-ю ячейку, являются случайными числами. Однако при очень большом числе горошин доля горошин стремится к своему пределу - вероятности pi попадания горошины в i-ю ячейку:
(I.16).
При многократных повторениях эксперимента в одинаковых условиях (в данном случае при одинаковых m и n) можно заметить следующие закономерности:
-Доли горошин yi , попавших в i-ю ячейку принимают случайные значения, преимущественно близкие к pi.
-Меньшие отклонения yi от pi встречаются чаще, чем большие.
По результатам N экспериментов можно найти среднее число горошин <ni> и среднюю долю горошин <yi>, попавших в i-ю ячейку:
, (I.17),
где ni,j и yi,j ─соответственно число горошин и доля горошин, попавших в i-ю ячейку в j-м эксперименте. В пределе, когда число повторений эксперимента N стремится к бесконечности, числа <ni> и < yi> стремятся к своим пределам:
, (I.18) ,
где - математическое ожидание для числа горошин в i-й ячейке, а для доли горошин yi в i-й ячейке математическое ожидание равно вероятности pi попадания горошин в i-ю ячейку. Вероятность pi для данного xi может быть найдена по (I.24) ,
Среднеквадратичное отклонение σni числа горошин в i-й ячейке от математического ожидания :
(I.19)
Среднеквадратичное отклонение σyi. доли горошин в i-й ячейке от её математического ожидания =pi:
(I.20).
Среднеквадратичное отклонение σni зависит от общего числа горошин n. При увеличении n σni тоже возрастает, но медленнее чем n: σni ~ . При этом среднеквадратичное отклонение σyi уменьшается: σyi ~ .
В частном случае, когда число горошин n→∞, а число решеток m достаточно велико и доля yi горошин, попавших в i-ю ячейку мала (yi<<1) среднеквадратичные отклонения числа горошин σni в i-й ячейке и доли горошин σyi в i-й ячейке выражаются через число горошин:
(I.21).
(I.22).
Отсюда следует, что погрешность экспериментального определения вероятностей pi по формуле (I.16) обратно пропорциональна .
Найдем из (I.21) и (I.22) относительные среднеквадратичные отклонения:
(I.23).
2.3. СТАТИСТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ДЛЯ РАСПРЕДЕЛЕНИЯ ГОРОШИН ПО ЯЧЕЙКАМ.
При рассеянии горошин на системе решеток различные смещения х встречаются с различной вероятностью. Совокупность вероятностей pi = p(xi) = p(x) для всех возможных значений смещений x составляет функцию распределения смещений горошин. При оговоренных в разделе 2.1 условиях машинного эксперимента результирующее смещение x горошины получится, если на решетках произойдет смещение на +1, а на решетках произойдет смещение на -1.
Распределение горошин по ячейкам выражается формулой:
(I.24),
Функция (I.24) является симметричной и монотонно уменьшается при увеличении модуля х.
Формула (I.24) является частным случаем биномиального распределения:
(I.25),
где р и q = 1 - p - вероятности смешения горошин на каждой отдельной решетке соответственно на +1 и -1 , –число возможных перестановок m1 неразличимых предметов по m местам. При подстановке p = q = 0,5 , m - m1 = m2 формула (I.15) переходит в (I.24).
Величины, стоящие в правой части (I.25) являются слагаемыми известного разложения суммы двух чисел p и q в степени m по формуле бинома Ньютона:
(I.26).
Поскольку p + q = 1 из (I.26) следует, что для функции распределения (I.25) выполняется условие нормировки (I.6).
Биномиальному распределению (I.25) подчиняется, например, случайное число m1 молекул газа, находящихся в произвольный момент времени в некотором выделенном объеме V1 всего объема V системы, содержащей m молекул. В этом случае p = V1/V – вероятность нахождения любой выбранной молекулы в объеме V1, q = 1-p – вероятность ее нахождения вне объема V1 (но внутри объема V).
При больших m функция (I.25) имеет острый максимум вблизи среднего числа <m1>=m·p молекул в объеме V1.
При большом числе решеток m→ ∞ распределение горошин по смещениям приближаются к функции Гаусса (I.13):
Pi = f(xi) Δx, (I.28).
где Δx = 2 , f(xi) рассчитывается по функции Гаусса (I.13) при µ = 0, (см. (I.33)).
Для каждого эксперимента по полученным значениям смещений горошин xi можно найти среднее смещение , которое так же является случайной величиной, но при увеличении числа горошин n→ ∞. оно стремится к постоянному пределу - математическому ожиданию смещения горошин µx.. Поскольку вероятности смещения на +1 и на -1 одинаковы, математическое ожидание µx. =0. При увеличении числа горошин n среднеквадратичное отклонение среднего смещения от математического ожидания уменьшается обратно пропорционально (сравните с (I.5).
Найдем дисперсию Dx = D и среднеквадратичное отклонение σx = σ случайного смещения горошин х в исследуемой модели при числе горошин n→∞. Запишем общее смещение в виде суммы случайных смещений ξ j на отдельных решетках:
, (I.29).
где j=1, 2, … , m - номер решетки, смещения ξj принимают значения +1 или -1 с вероятностью 0,5.
Согласно (I.3) с учетом µx = 0:
, (I.30).
где: (I.31).
При нахождении в (I.30) среднего значения в пределе при n→ ∞ вторая сумма в (I.31) обращается в 0, поскольку смещения ξ j и ξ k на разных решетках независимы друг от друга и с равной вероятностью могут быть одинакового или противоположного знака. Поэтому, с учетом =1, остается:
. (I.32).
Среднеквадратичное отклонение (I.33).
3. ПРОВЕДЕНИЕ КОМПЬЮТЕРНОГО ЭКСПЕРИМЕНТА С ПРОГРАММОЙ MF2.
Для проведения эксперимента вводятся следующие данные:
1. Число решеток (от 1 до 20).
2. Общее число горошин (от 1 до 10000).
3. Число горошин в серии (от 1 до общего числа горошин).
4. Скорость движения горошин (от 0 до 10).
Последние два данных на результаты эксперимента не влияют и выбираются из условия удобства наблюдения за ходом эксперимента.
После ввода данных автоматически начинается эксперимент.
После завершения эксперимента на экране появляется сообщение:
1. Запомнить и обработать результаты эксперимента.
2. Возврат в меню.
При нажатии клавиши ’’2’’ результаты проведенного эксперимента уничтожаются, и происходит возврат в меню. При нажатии клавиши ’’1’’ производится обработка результатов эксперимента и вывод их на экран в виде таблицы и графика. В таблице приводятся значения координат ячеек x; числа горошин, n(x), попавших в каждую ячейку; доля горошин y(x) от общего числа; значения аппроксимирующей функции Гаусса (I.13) в точках x, соответствующих координатам ячеек и значения биномиальной функции распределения (I.24) для данного числа решеток.
Функция Гаусса рассчитывается для среднеквадратичного отклонения горошин, полученного в данном эксперименте:
На графике в одинаковом масштабе приводятся распределение горошин по ячейкам, биномиальная функция и функция Гаусса.
4. . ПОРЯДОК ВЫПОЛНЕНИЯ ЭКСПЕРИМЕНТАЛЬНОЙ ЧАСТИ РАБОТЫ.
Упражнение.1. Исследование статистических закономерностей для числа горошин в одной ячейке.
Для указанного преподавателем числа решеток m провести 5 экспериментов с большим n ≥ 1000 числом горошин. В каждом j-м эксперименте записать число горошин ni, j, попавших в указанную преподавателем i-ю ячейку.
По полученным результатам рассчитать среднее число горошин <ni>, попавших в i-ю ячейку, и среднюю долю горошин <yi>. Полученные значения сравнить с математическими ожиданиями µxi и p(xi).
Рассчитать среднеквадратичное отклонения числа горошин в i-й ячейке от среднего арифметического:
и относительное среднеквадратичное отклонение числа горошин .
Полученные значения нения сравнить с и 1/ .
Сформулировать выводы.
Упражнение.2. Исследование статистических закономерностей распределения горошин по ячейкам при различном числе решеток.
По указанию преподавателя провести эксперименты с большим числом горошин ( n 2000 ) и различным числом решеток m: малым ( m = 2 – 5 ), средним ( m = 6 – 10 ) и большим ( m = 10 – 20). В каждом эксперименте провести обработку результатов, таблицы результатов переписать в тетрадь, по точкам из таблицы построить графики.
Сравнить экспериментальные y(x), биномиальные и Гауссовы функции распределения для различных чисел решеток и между собой. Сравнить полученные дисперсии с числом решеток. Сформулировать выводы.
Упражнение.3. Исследование статистических закономерностей распределения горошин по ячейкам при различном числе горошин.
По указанию преподавателя провести эксперименты с большим числом решеток m 10 и различным числом горошин: малым (n = 10 – 20), средним (n = 100 – 500) и большим (n 1000). Провести обработку экспериментов, переписать таблицы и построить графики.
Сравнить экспериментальные y(x), биномиальные и Гауссовы функции распределения для различных чисел горошин и между собой. Сформулировать выводы.
КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Что общего и в чем различие между средним значением и математическим ожиданием случайной величины?
2. Основные параметры дискретных и непрерывных случайных величин. Как они находятся?
3. Как зависит погрешность экспериментально определенной функции распределения горошин по ячейкам от общего числа горошин.
4. Где реализуется биномиальная функция распределения?
5. В каких случаях применима функция распределения Гаусса.
ЛИТЕРАТУРА.
А.Н. Матвеев. Молекулярная физика. М. “Высшая школа” 1981 г. с. 18 – 35, 43 – 55, 55 – 60.
II. Лабораторная работа № 4.
Измерение теплоемкости металлов и параметров естественной конвекции методом охлаждения.
1. Основные понятия.
Теплоёмкостью тела Стела называется отношение бесконечно малого количества тепла , полученного телом, к вызванному этим приращению его температуры dT. Удельной теплоемкостью с (с- малое) называется теплоемкость единицы массы вещества, молярной теплоемкостью С (С- большое) называется теплоемкость одного моля:
Стела= /dT; ; (II.1)
где m- масса тела, ν число молей, причем С= μ*с, где μ - молярная масса. Теплоемкость зависит от условий нагрева или охлаждения. При этом наиболее часто используются теплоемкость при постоянном объёме:
; ( аналогично Стела и СV ),
и теплоемкость при постоянном давлении
; ( аналогично Стела и Ср ).
Между Ср и СV существует соотношение:
где Vмол- молярный объём, U- внутренняя энергия, - температурный коэффициент объемного расширения.
Ср больше чем Сv на величину работы ,совершаемой при нагревании 1 моля тела на 1К, против внешнего давления Р и внутреннего давления Рi= , обусловленного силами взаимодействия между молекулами тела. Для идеального газа Ср-Сv=R - соотношение Роберта Майера, а для твердых и жидких тел ввиду малости температурного коэффициента объемного расширения Ср и Сv практически равны. Теплоемкость зависит от химического состава, строения молекул тела. Обычно при увеличении температуры теплоемкость также возрастает. Теплоемкость Сv можно выразить через средние числа задействованных степеней свободы молекул тела:
Сv=(iпост+iвр+2*iколеб)*R/2=iэфф*R/2 (II.2)
где iпост ,iвр, iколеб - средние числа поступательных, вращательных и колебательных степеней свободы, которые могут принимать тепловую энергию при данных условиях. iэфф - эффективное число степеней свободы. Например в газах, при нормальных условиях, задействованы только поступательные (iпост=3) и вращательные степени свободы (iвр.=0 для одноатомных, iвр.=2 для линейных и iвр.=3 для нелинейных молекул). Для возбуждения колебательных степеней свободы молекул газов при н.у. энергии теплового движения недостаточно. Соответственно Сv= 3/2R; 5/3R; 6/2R для газов с одноатомными, линейными и нелинейными молекулами.
В твердых телах, наоборот, молекулы могут совершать только колебательные движения около своих положений равновесия. При этом на каждый атом приходится при достаточно высоких температурах 3 колебательные степени свободы, и согласно закону Дюлонга-Пти теплоемкость Сv твердых тел равняется: Сv=3nR, где n - число атомов в молекуле.
2. ТЕОРИЯ МЕТОДА.
Предлагаемый метод измерения теплоемкости металлов основан на сравнении скоростей естественного охлаждения в одинаковых условиях одинаковых по форме и размеру образцов из исследуемого и эталонного металлов, предварительно нагретых до некоторой начальной температуры Тнач.
Если температура тела Т отличается от температуры окружающей среды Т0 , то между телом и средой происходит теплообмен.
Существует три механизма теплообмена:
1. Теплопроводность -это теплообмен за счет теплопроводности окружающей среды (при этом среда остается неподвижной относительно тела). При небольшой разности температур количество тепла , отданного телом в окружающую среду за время t, выражается законом теплоотдачи Ньютона:
(II.3)
где S - площадь поверхности тела. - коэффициент теплоотдачи, зависящий от формы тела, температур Т0 и Т, давления и состава окружающей среды. Для газов и практически не зависит от давления.
2. Конвекция - это теплообмен за счет теплопроводности ближайших к телу слоев окружающей среды, которые тут же уносятся от образца в результате движения самой среды относительно тела. Конвекция называется искусственной, если движение среды вызвано внешними причинами (например, работающим вентилятором) и естественной - если среда приводится в движение за счет разности выталкивающих сил Архимеда и сил тяжести, действующих на различные слои среды, при наличии температурного градиента около тела. Естественная конвекция возникает скачком при достижении некоторой критической разности температур Т и Т0. При этом резко возрастает интенсивность теплообмена, который при конвекции описывается уравнением
(II.4)
где В и n (n>0), - параметры, зависящие от формы тела и свойств окружающей среды, - теплопроводность воздуха при температуре Т.
3. Тепловое излучение - это теплообмен за счет испускания и поглощения телом теплового электромагнитного излучения. При этом теплообмен описывается уравнением Стефана-Больцмана:
где - постоянная Стефана-Больцмана, a- усредненный коэффициент поглощения электромагнитного излучения поверхностью тела (а=1 для абсолютно черного тела, для всех реальных тел 0 < a < 1).
Тепловое излучение вносит заметный вклад в теплообмен только при высоких температурах и в настоящей работе им можно пренебречь.
Теплопроводность и конвекция не зависят от состава тела, поэтому и для исследуемого образца и для эталона, если они имеют одинаковые размеры, количество отдаваемого в окружающую среду тепла будет описываться одной и той же функцией:
(II.5).
Из (II.1) и (II.5), учитывая, что , можно найти скорость охлаждения для исследуемого образца (n) и для эталона (э):
; (II.6).
При одинаковых температурах Тn = Тэ = Т:
(II.7).
По формуле (II.7) можно рассчитать теплоемкость исследуемого образца при различных температурах Т, если известны теплоемкости эталона при этих температурах.
Скорости охлаждения υn(T) и υэ(Т) можно найти по наклону касательных к графикам охлаждения Тn(t) и Tэ(t) в точках, соответствующих температуре Т.
Практически из-за того, что скорость охлаждения быстро убывает по мере уменьшения температуры, вместо графиков охлаждения Т(t) в линейной шкале температур удобно воспользоваться логарифмическими графиками охлаждения
y = ln (T-T0 ) = f(t),
на которых у почти линейно убывает с течением времени.
Модуль тангенса угла наклона касательной в точке, соответствующей температуре Т для кривой равен:
(II.8).
Тогда при одинаковых температурах Тn = Тэ = Т
и вместо (II.7) получим:
.
3.МЕТОДИКА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЕСТЕСТВЕННОЙ КОНВЕКЦИИ.
По графику охлаждения эталонного образца можно определить параметры В и n естественной конвекции в условиях опыта. Сравнивая (II.4) и (II.5) и используя (II.6) и (II.8) получим:
В χ S (T-T0)n+1 = m с υ = m с K (T-T0).
Отсюда для эталонного образца
(II.9),
где Х (Т) можно рассчитать для различных температур по экспериментально полученным значениям Кэ для эталона, известным из справочника значениям удельной теплоемкости сэ и коэффициента теплопроводности воздуха χэ при этих температурах.
Если из справочника известна теплопроводность воздуха при температуре Т1, теплопроводность при других температурах Т можно найти по формуле
Для нахождения параметров В и n удобно воспользоваться графическим методом. Логарифмируем (II.4):
ln Х = ln В + n ln (Т-Т0) (II.10).
Из (II.10) видно, что зависимость ln Х от ln (Т-Т0) линейная, причем начальное значение ln Х (при ln (Т-Т0)=0) равно ln В, а угловой коэффициент этой зависимости равен n.
ОПИСАНИЕ УСТАНОВКИ
На рис.1 изображена схема установки. Исследуемые образцы представляют собой цилиндры с высверленным с одного конца каналом. В этот канал помещают хромель-алюмелевую термопару. Концы термопары подведены к самопишущему потенциометру, который автоматически записывает на диаграммной ленте зависимость температуры образца от времени.
Порядок выполнения работы.
1. Взвесить образцы меди, алюминия и железа.
2. Включить тумблер «сеть» самопишущего потенциометра, дать прогреться потенциометру не менее 5 минут, измерить температуру воздуха Т0 вблизи термопары.
3. Ручкой подстроечного резистора «уст 0» выставить каретку потенциометра на 0о С, когда термопара находится при комнатной температуре. В этом случае потенциометр будет показывать по шкале и записывать на диаграммную ленту разность ∆Т = Т – Т0