Простая эконометрическая модель (Простая регрессия)

Простейшим соотношением между двумя переменными является линейная связь между ними, которая описывается линейной функцией и называется простой линейной регрессией.

Простая эконометрическая модель (Простая регрессия) - student2.ru . (2.5)

где Простая эконометрическая модель (Простая регрессия) - student2.ru – результативный признак, или зависимая переменная, Х – объясняющая переменная, e - случайная переменная (возмущение), b0, b1 – неизвестные параметры модели.

Таким образом, зависимая переменная Y представляется как сумма детерминированной ( Простая эконометрическая модель (Простая регрессия) - student2.ru ) и случайной (e) составляющих и является величиной случайной (тогда как Х предполагается детерминированной величиной).

Истинные значения параметров b0 и b1 вычислить невозможно, поскольку обычно в распоряжении исследователя находится ограниченное число наблюдений, поэтому неизвестные параметры регрессии подлежат оцениванию по определенной процедуре. Оценки параметров будем обозначать через b0 и b1 соответственно. Тогда уравнение парной регрессии

Простая эконометрическая модель (Простая регрессия) - student2.ru (2.6)

будет являться оценкой модели (2.5).

В этом уравнении b0 – постоянная регрессии (свободный член). Ее можно представить в виде коэффициента при фиктивной переменной, тождественно равной 1. Постоянная b0 определяет точку пересечения прямой регрессии с осью ординат (рис.1).

Простая эконометрическая модель (Простая регрессия) - student2.ru Y Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru

Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru

 
  Простая эконометрическая модель (Простая регрессия) - student2.ru

Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Yi

Простая эконометрическая модель (Простая регрессия) - student2.ru j b1

Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru

b0

Простая эконометрическая модель (Простая регрессия) - student2.ru

 
  Простая эконометрическая модель (Простая регрессия) - student2.ru

1 Xi X

Рис.1 Регрессионная прямая

Так как в соответствии с общим истолкованием уравнения регрессии b0 является средним значением Y в точке X=0, то, очевидно, что экономическая интерпретация b0 часто очень затруднительна или вообще невозможна. Но, благодаря постоянной b0, которая выполняет в уравнении регрессии функцию выравнивания, линия регрессии неошибочна.

Для большинства практических исследований особый интерес представляют величины b1 и Простая эконометрическая модель (Простая регрессия) - student2.ru . Коэффициент b1 называют коэффициентом регрессии. Он характеризует наклон прямой к оси абсцисс и равняется тангенсу угла наклона j (рис.1). Согласно (2.6) b1 показывает, насколько в среднем изменится Y при изменении Х на одну единицу. Знак b1 определяет направление этого изменения. При положительном коэффициенте регрессии с ростом значений Х растет и Y, при отрицательном – увеличение значений Х сопровождается уменьшением Y.

Параметры регрессии – не безразмерны: постоянная уравнения регрессии b0 имеет размерность переменной Y; размерность b1 представляет собой отношение размерности зависимой переменной к размерности объясняющей переменной.

Пример.

Компания регулярно помещает рекламу на один из своих товаров в местную газету и ежемесячно ведет записи о суммах денег, затраченных на рекламу, и поступлений от продажи этого товара.

Если реклама эффективна, то можно предположить, что существует какая-то связь между затратами на рекламу и соответствующими ежемесячными объемами продаж: пусть с ростом суммы затраченных на рекламу средств растет объем продаж (по крайней мере в определенных пределах). Не существует теоретической основы, опираясь на которую мы могли бы написать уравнение, точно характеризующее связь продаж с расходами на рекламу. Имеется ряд факторов, неразрывно связанных между собой, которые определяют ежемесячный объем реализаций – это цена товара, цена товара-конкурента, период времени, погодные условия и т.д. Тем не менее, если расходы на рекламу являлись бы главным фактором, влияющим на продажу, то знание связи между этими двумя переменными было бы очень полезным для оценки объема продаж и соответствующего планирования финансовой политики компании.

Поскольку объем продаж – величина, которую желательно предсказать, то это будет зависимая переменная Y, тогда расходы на рекламу – независимая переменная Х.

Теперь необходимо проверить наши предположения о наличии и характере связи между переменными. Для этого воспользуемся собранными компанией ежемесячными данными об изменении рассматриваемых показателей (табл. 2).

Таблица 2

Объем продажи товара, тыс. грн. Затраты на рекламу, грн.

Нам нужно объяснить изменение объема продаж (У), принимая затраты на рекламу в качестве независимой переменной (Х). Представим данные таблицы 1на графике, чтобы определить связь, которая существует между переменными (рис. 2).

Простая эконометрическая модель (Простая регрессия) - student2.ru У, тыс.грн.

Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru

Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru 50

 
  Простая эконометрическая модель (Простая регрессия) - student2.ru

Простая эконометрическая модель (Простая регрессия) - student2.ru

Простая эконометрическая модель (Простая регрессия) - student2.ru 40

 
  Простая эконометрическая модель (Простая регрессия) - student2.ru

Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru 30

 
  Простая эконометрическая модель (Простая регрессия) - student2.ru

Простая эконометрическая модель (Простая регрессия) - student2.ru 20

 
  Простая эконометрическая модель (Простая регрессия) - student2.ru

Простая эконометрическая модель (Простая регрессия) - student2.ru

Простая эконометрическая модель (Простая регрессия) - student2.ru Простая эконометрическая модель (Простая регрессия) - student2.ru 10

 
  Простая эконометрическая модель (Простая регрессия) - student2.ru

0 80 100 120 140 160 180 190 Х, грн.

Рисунок 2. Диаграмма рассеяния объема продаж в

зависимости от затрат на рекламу

Из рисунка 2 следует, что с увеличением затрат на рекламу количество продаваемого продукта растет. Расположение точек позволяет представить связь между рассматриваемыми показателями в виде прямой линии.

После получения численных оценок параметров по уравнению регрессии для каждого значения независимой переменной Хi может быть вычислено значение Простая эконометрическая модель (Простая регрессия) - student2.ru . Значения функции регрессии Простая эконометрическая модель (Простая регрессия) - student2.ru (i =1,2,…,n) называются расчетными или предсказанными значениями переменной Y для фиксированных Хi.

При линейной функции совокупность расчетных значений образует прямую регрессии. Как уже упоминалось, из-за искажающего влияния посторонних факторов-причин для каждого значения Хi может наблюдаться несколько эмпирических значений Yi , т.е. каждому значению Хi соответствует в статистическом смысле распределение вероятностей значений переменной Y. Значения функции регрессии Простая эконометрическая модель (Простая регрессия) - student2.ru являются, таким образом, оценками средних значений переменной Y для каждого фиксированного значения переменной Хi.

Отсюда становится очевидной экономическая интерпретация Простая эконометрическая модель (Простая регрессия) - student2.ru . Значения регрессии Простая эконометрическая модель (Простая регрессия) - student2.ru указывают среднее значение зависимой переменной Y при заданном значении Хi объясняющей переменной Х в предположении, что единственной причиной изменения переменной Y является переменная Х, а случайная возмущающая переменная e приняла нулевой значение. Разброс наблюдаемых значений переменной Y вокруг Простая эконометрическая модель (Простая регрессия) - student2.ru обусловлен влиянием множества причин, не поддающихся строгому учету и контролю. Разность между эмпирическим значением Yi и расчетным значением Простая эконометрическая модель (Простая регрессия) - student2.ru , называемая также остатком, дает численную оценку значения возмущающей переменной (возмущения) e; остатки обозначим как е.

Таким образом, мы подошли к проблеме оценивания неизвестных параметров регрессии b0 и b1. Различным значениям их оценок b0 и b1 будут соответствовать различные линии. Из бесчисленного множества прямых, которые можно провести на плоскости, следует выбрать одну, наилучшим образом приближающуюся к опытным данным.

Наши рекомендации