Дискретно-непрерывные каналы
Модели каналов связи и их математическое описание
Точное математическое описание любого реального канала связи обычно весьма сложное. Вместо этого используют упрощенные математические модели, которые позволяют выявить важнейшие закономерности реального канала.
Рассмотрим наиболее простые и широко используемые связи модели каналов.
Непрерывные каналы.
Идеальный канал без помех вносит искажения, связанные с изменением амплитуды и временного положения сигнала и представляет собой линейную цепь с постоянной передаточной функцией, обычно сосредоточенной в ограниченной полосе частот. Допустимы любые входные сигналы, спектр которых лежит в определенной полосе частот , имеющие ограниченную среднюю мощность . Эта модель используется для описания каналов малой протяженности с закрытым распространением сигналов (кабель, провод, волновод,световод и т. д.).
Канал с гауссовским белым шумом представляет собой идеальный канал, в котором на сигнал накладывается помеха:
. | (1.4) |
Коэффициент передачи и запаздывание считаются постоянными и известными в точке приема; – аддитивная помеха. Такая модель, например, соответствует радиоканалам, с приемо-передающими антеннами работающими и находящимися в пределах прямой видимости.
Гауссовский канал с неопределенной фазой сигнала
Эта модель отличается от предыдущей модели тем, что в ней запаздывание является случайной величиной. Для узкополосных сигналов выражение (1.4) при постоянном и случайных можно представить в виде:
, | (1.5) |
где – преобразование Гильберта от сигнала ; – случайная фаза.
Распределение вероятностей предполагается заданным, чаще всего равномерным на интервале от до . Эта модель удовлетворительно описывает те же каналы, что и предыдущая, если фаза сигнала в них флуктуирует. Флуктуации фазы обычно вызываются небольшими изменениями протяженности канала, свойств среды, в которой проходит сигнал, а также фазовой нестабильностью опорных генераторов.
Дискретно-непрерывные каналы.
Дискретно-непрерывный канал имеет дискретный вход и непрерывный выход. Примером такого канала является канал, образованный совокупностью технических средств между выходом кодера канала и входом демодулятора. Для его описания необходимо знать алфавит входных символов , , вероятности появления символов алфавита , полосу пропускания непрерывного канала , входящего в рассматриваемый канал и плотности распределения вероятностей (ПРВ) появления сигнала на выходе канала при условии, что передавался символ .
Зная вероятности и ПРВ по формуле Байеса можно найти апостериорные вероятности передачи символа :
, |
Решение о переданном символе обычно принимается из условия максимума .
Дискретные каналы.
Примером дискретного канала без памяти может служить m канал. Канал передачи полностью описывается если заданы алфавит источника , , вероятности появления символов алфавита , скорость передачи символов , алфавит получателя , и значения переходных вероятностей появления символа при условии передачи символа .
Первые две характеристики определяются свойствами источника сообщений, скорость – полосой пропускания непрерывного канала, входящего в состав дискретного. Объем алфавита выходных символов зависит от алгоритма работы решающей схемы; переходные вероятности находятся на основе анализа характеристик непрерывного канала.
Стационарным называется дискретный канал, в котором переходные вероятности не зависят от времени.
Дискретным каналом называется каналом без памяти, если переходные вероятности не зависят от того, какие символы передавались и принимались ранее.
В качестве примера рассмотрим двоичный канал (рис. 1.5). В этом случае , т.е. на входе канала алфавит источника и алфавит получателя состоит из двух символов «0» и «1».
Стационарный двоичный канал называется симметричным, если алфавиты на входе и выходе совпадают. Каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью и правильно с вероятностью .
Необходимо отметить, что в общем случае в дискретном канале объемы алфавитов входных и выходных символов могут не совпадать. Примером может быть канал со стиранием(рис. 1.6). Алфавит на его выходе содержит один добавочный символ по сравнению с алфавитом на входе. Этот добавочный символ (символ стирания « ») появляется на выходе канала тогда, когда анализируемый сигнал не удается отождествить ни с одним из передаваемых символов. Стирание символов при применении соответствующего помехоустойчивого кода позволяет повысить помехоустойчивость.
Большинство реальных каналов имеют «память», которая проявляется в том, что вероятность ошибки в очередном символе зависит от того, какие символы передавались до него и как они были приняты. Первый факт обусловлен межсимвольными искажениями, являющимися результатом рассеяния сигнала в канале, а второй – изменением отношения сигнал-шум в канале или характера помех.
В постоянном симметричном канале без памяти условная вероятность ошибочного приема ( )-го, символа если -й символ принят ошибочно, равна безусловной вероятности ошибки. В канале с памятью она может быть больше или меньше этой величины.
Наиболее простой моделью двоичного канала с памятью является марковская модель, которая задается матрицей переходных вероятностей:
, |
где – условная вероятность принять ( )-й символ ошибочно, если -й принят правильно; – условная вероятность принять ( )-й символ правильно, если -й принят правильно; – условная вероятность принять ( )-й символ ошибочно, если -й принят ошибочно; – условная вероятность принять ( )-й символ правильно, если -й принят ошибочно.
Безусловная (средняя) вероятность ошибки в рассматриваемом канале должна удовлетворять уравнению:
или
.
Данная модель имеет достоинство – простоту использования, не всегда адекватно воспроизводит свойства реальных каналов. Большую точность позволяет получить модель Гильберта для дискретного канала с памятью. В такой модели канал может находиться в двух состояниях и . В состоянии ошибок не происходит; в состоянии ошибки возникают независимо с вероятностью . Также считаются известными вероятности перехода из состояния в и вероятности перехода из состояния в состояние . В этом случае простую марковскую цепь образует не последовательность ошибок, а последовательность переходов:
.
При этом достаточно легко выразить безусловные вероятности нахождения канала в состояниях и :
, .
Безусловная вероятность ошибки в этом случае может быть определена по формуле:
.
Наиболее часто при использовании модели Гильберта для двоичного канала полагают , т.е. состояние рассматривается как полный обрыв связи. Это согласуется с представлением о канале, в котором действуют коммутационные помехи.
Возможен другой подход к построению математических моделей каналов, при котором вся предыстория до некоторого фиксированного момента времени заменяется заданием некоторого начального состояния цепи. Зная характеристики цепи, начальное состояние и сигнал, действующий только на промежутке от до , можно определить сигнал на выходе и новое состояние цепи в любой момент времени .
Состоянием цепи называется минимальное множество величин, в которое входит элементов, однозначно определяющих поведение цепи в момент времени . Элементы этого множества называют переменными состояния, которые обычно рассматривают как составляющие компоненты -мерного вектора. Для любой цепи можно записать два уравнения, позволяющих по состоянию в момент и сигналу, поступающему на вход, найти выходной сигнал и состояние в момент . Эти матричные уравнения называют уравнением состояния и уравнением наблюдения.
Литература:
1.Радиотехника / Под ред. Мазора Ю.Л., Мачусского Е.А., Правды В.И.. — Энциклопедия. — М.: ИД «Додэка-XXI», 2002. — С. 488. — 944 с. — 2.Прокис, Дж. Цифровая связь = Digital Communications / Кловский Д. Д.. — М.: Радио и связь, 2000. — 800 с.
3.Скляр Б. Цифровая связь. Теоретические основы и практическое применение = Digital Communications: Fundamentals and Applications. — 2-е изд. — М.: Вильямс, 2007. — 1104 с
4.Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра = Wireless Digital Communications: Modulation and Spread Spectrum Applications. — М.: Радио и связь, 2000. — 552 с.