Атомные паротурбинные установки

На рис. 9.24 приведена схема двухконтурной атомной паротурбинной установки.

Атомный реактор представляет собой металлический кожух, заполненный стержнями с ядерным горючим (природный уран 238U в смеси с
ураном 235U). При делении ядер урана выделяется теплота.

В первом контуре (I) циркулирует теплоноситель (вода под давлением, жидкие металлы, органические жидкости, газы), прокачиваемый насосами через атомный реактор и нагреваемый за счет теплоты, выделяющейся в результате реакции деления ядерного топлива.

 
  Атомные паротурбинные установки - student2.ru

Обозначения: АР - атомный реактор;

ПГ - парогенератор; Т - турбина; К - конденсатор;

Н - насос; БЗ - биологическая защита

Во втором контуре (II) циркулирует рабочее тело (вода и водяной пар). Теплота от теплоносителя к рабочему телу передается в теплообменнике – парогенераторе.

Биологическая защита – стена из баррибетона, отделяющая оборудование второго контура, которое обслуживается людьми, от оборудования первого контура.

При одноконтурной схеме рабочее тело из реактора направляется в турбину. В этом случае все оборудование работает в радиоактивных условиях. Это усложняет эксплуатацию. Преимуществом является лишь простота конструкции.

Атомные паротурбинные установки - student2.ru На рис. 9.25 представлен обратимый цикл в T-s-диаграмме первой в мире атомной паротурбинной установки (1954 г.).

Установка – двухконтурная. Теплоноситель – вода при давлении 100 бар, нагреваемая в атомном реакторе от 1900С до 2700С.

Электрическая мощность установки Nэ=5 МВт, электрический КПД

Атомные паротурбинные установки - student2.ru ,

где Атомные паротурбинные установки - student2.ru , Вт – тепловая мощность атомного реактора;

GT, кг/с – расход теплоносителя;

Атомные паротурбинные установки - student2.ru , Атомные паротурбинные установки - student2.ru - энтальпия теплоносителя на входе и на выходе атомного реактора.

Развитие и совершенствование оборудования атомных электростанций позволило повысить параметры пара до Р1 = 30 - 80 бар, температуру перегрева до t1 = 500 - 5150C, электрический КПД до Атомные паротурбинные установки - student2.ru , единичную мощность энергоблоков довести до 1000 МВт и более.

Для атомных паротурбинных установок приходится решать много проблем: обеспечение максимального теплосъема в атомном реакторе, осуществление теплообмена в парогенераторе с наименьшей степенью необратимости, проведение процесса расширения пара в турбине при допустимой влажности пара х2 ³ хдоп = 0,88 – 0,92.

Достоинством атомных электростанций является независимость от источников сырья. Для выработки 1 млн. кВт.ч электроэнергии требуется 200 г урана или 400 т угля. Экологическая чистота АЭС много выше, чем ТЭС, работающей на органическом топливе. Атомная энергетика – это энергетика будущего.

Методические указания

При изучении темы “Циклы газотурбинных двигателей и установок” необходимо:

· понимать принцип работы ГТД и ГТУ;

· знать схемы установок и уметь анализировать их работу, используя
p-v- и T-s- диаграммы;

· понимать смысл коэффициентов полезного действия, характеризующих различные виды потерь в ГТУ;

· уметь рассчитать составляющие уравнения теплового баланса;

· знать способы повышения тепловой экономичности ГТУ.

Паротурбинные установки являются основой теплоэнергетики, поэтому особое внимание следует уделить средствам повышения эффективности циклов паротурбинных установок. Понимать возможности и особенности применения для оценки эффективности метода КПД и эксергетического метода. Знать способы увеличения КПД паротурбинных установок: увеличение параметров пара перед турбиной, снижение давления в конденсаторе, применение промежуточного перегрева пара, регенеративного подогрева конденсата.

Разобраться с особенностями работы и расчета теплофикационных и атомных установок.

Задачи

1. Для газотурбинного двигателя с циклом Брайтона (рис. 9.4) дано:

· параметры воздуха на входе в компрессор p1 = 1 бар, t 1= 20 0С;

· степень повышения давления в компрессоре b = p2/p1= 6;

· внутренние относительные КПД турбины и компрессора Атомные паротурбинные установки - student2.ru ;

· механические КПД турбины и компрессора Атомные паротурбинные установки - student2.ru ;

· КПД камеры сгорания Атомные паротурбинные установки - student2.ru .

Рассчитать:

· температуры t2, t4, термический КПД (ht) обратимого цикла 1-2-3-4;

· эффективный КПД ГТД (he);

· составляющие уравнения теплового баланса, проверить тождество, сделать выводы.

Принять, что рабочее тело обладает свойствами воздуха. Теплоемкость воздуха считать постоянной (mcv = 20,8 кДж/кмоль.0С).

Решение

Для воздуха (двухатомный газ) при постоянной теплоемкости показатель адиабаты k = 1,4, изобарная теплоемкость

Атомные паротурбинные установки - student2.ru .

Температуры Т2 и Т4 рассчитываются по связям между параметрами в обратимых адиабатных процессах 1-2 и 3-4:

Атомные паротурбинные установки - student2.ru

Термический КПД обратимого цикла 1-2-3-4 при постоянной теплоемкости:

Атомные паротурбинные установки - student2.ru .

Рассчитываются конечные температуры действительных процессов сжатия и расширения T и T по уравнениям (9.3) и (9.4). При постоянной теплоемкости имеем:

Атомные паротурбинные установки - student2.ru

Рассчитываются Атомные паротурбинные установки - student2.ru :

Атомные паротурбинные установки - student2.ru

Рассчитываются потери:

· тепла в камере сгорания

Атомные паротурбинные установки - student2.ru

· тепла с отработавшими газами

Атомные паротурбинные установки - student2.ru

· механические потери в компрессоре

Атомные паротурбинные установки - student2.ru

· механические потери в турбине

Атомные паротурбинные установки - student2.ru

Подстановка численных значений в уравнение теплового баланса

Атомные паротурбинные установки - student2.ru

дает тождество

557,4 = 105,6 + 22,3 + 414,6 + 7,6 + 7,3 = 557,4 кДж/кг.

Вывод. Максимальное количество тепла в газотурбинном двигателе теряется с отработавшими газами.

2. Сравнить термические КПД трех циклов с давлением в паровом котле p1 = 98 бар, в конденсаторе – p2 = 0,04 бар:

а) цикла Ренкина на насыщенном паре (x1 = 1);

б) цикла Карно;

в) цикла Ренкина на перегретом паре с t1 = 540 0С.

Затратой работы на насос пренебречь.

Как изменится термический КПД цикла Ренкина на перегретом паре с параметрами p1 = 98 бар, t1= 540 0С, p2 = 0,04 бар, если:

г) ввести промежуточный перегрев пара при давлении p¢ = 10 бар до первоначальной температуры?

д) ввести регенеративный подогрев конденсата в одном смешивающем подогревателе при давлении p0 = 7 бар?

Сопоставить полученные результаты и сделать выводы.

9.7. Ответы:

 
  Атомные паротурбинные установки - student2.ru

Наши рекомендации