Упрощение матричных игр

Тема 1 Решение матричных игр в чистых стратегиях

Понятие об играх и стратегиях

Определение. "Игра (в математике) - это идеализированная математическая модель коллективного поведения: несколько игроков влияют на исход игры, причем их интересы различны". [7].

Регулярное действие, выполняемое игроком во время игры, называется ходом. Совокупность ходов игрока, совершаемых им для достижения цели игры, называется стратегией.

Запись матричной игры в виде платёжной матрицы

В общем виде матричная игра может быть записана следующей платёжной матрицей [1, 2, 7] (рис. 1.1.),

  B1 B2 Bn
A1 A11 A12 ... A1n
A2 A21 A22 ... A2n
... ... ... ...
Am am1 am2 ... amn

Рис. 1.1. Общий вид платёжной матрицы матричной игры

где Ai – названия стратегий игрока 1, Bj – названия стратегий игрока 2, aij – значения выигрышей игрока 1 при выборе им i – й стратегии, а игроком 2 – j – й стратегии. Поскольку данная игра является игрой с нулевой суммой, значение выигрыша для игрока 2 является величиной, противоположенной по знаку значению выигрыша игрока 1.

Понятие о нижней и верхней цене игры. Решение игры в чистых стратегиях

Каждый из игроков стремится максимизировать свой выигрыш с учётом поведения противодействующего ему игрока. Поэтому для игрока 1 необходимо определить минимальные значения выигрышей в каждой из стратегий, а затем найти максимум из этих значений, то есть определить величину

Vн = maxi minj aij ,

или найти минимальные значения по каждой из строк платёжной матрицы, а затем определить максимальное из этих значений. Величина Vн называется максимином матрицы или нижней ценой игры.

Величина выигрыша игрока 1 равна, по определению матричной игры, величине проигрыша игрока 2. Поэтому для игрока 2 необходимо определить значение

Vв = minj maxi aij .

Или найти максимальные значения по каждому из столбцов платёжной матрицы, а затем определить минимальное из этих значений. Величина Vв называется минимаксом матрицы или верхней ценой игры.

В случае, если значения Vн и Vв не совпадают, при сохранении правил игры (коэффициентов aij ) в длительной перспективе, выбор стратегий каждым из игроков оказывается неустойчивым. Устойчивость он приобретает лишь при равенстве Vн = Vв = V. В этом случае говорят, что игра имеет решение в чистых стратегиях, а стратегии, в которых достигается V - оптимальными чистыми стратегиями. Величина V называется чистой ценой игры. [8].

Например, в матрице (рис. 1.2)

  B1 B2 B3 B4 Minj
A1
A2
A3
Maxi  

Рис. 1.2. Платёжная матрица, в которой существует решение в чистых стратегиях

существует решение в чистых стратегиях. При этом для игрока 1 оптимальной чистой стратегией будет стратегия A1, а для игрока 2 – стратегия B4.

В матрице (рис. 1.3)

  B1 B2 B3 B4 Minj
A1
A2
A3
Maxi  

Рис. 1.3. Платёжная матрица, в которой не существует решения в чистых стратегиях

решения в чистых стратегиях не существует, так как нижняя цена игры достигается в стратегии A1 и её значение равно 2, в то время как верхняя цена игры достигается в стратегии B4 и её значение равно 3.

ассмотрим несколько методов упрощения платёжных матриц.

Упрощение матричных игр

Решение матричных игр тем сложнее, чем больше размерность платежной матрицы. Поэтому для игр с платежными матрицами большой размерности отыскание оптимального решения можно упростить, если уменьшить их размерность путем исключения дублирующих и заведомо невыгодных (доминируемых) стратегий.

Определение 1. Если в платежной матрице игры все элементы строки (столбца) равны соответствующим элементам другой строки (столбца), то соответствующее этим строкам (столбцам) стратегии называются дублирующими.

Определение 2. Если в платежной матрице игры все элементы некоторой строки, определяющей стратегию Аi игрока А, не больше (меньше или некоторые равны) соответствующих элементов другой строки, то стратегия Аi называется доминируемой (заведомо невыгодной).

Определение 3. Если в платежной матрице игры все элементы некоторого столбца, определяющего стратегию Вi игрока В не меньше (больше или некоторые равны) соответствующих элементов другого столбца, то стратегия Вi называется доминируемой (заведомо невыгодной).

Правило. Решение матричной игры не изменится, если из платежной матрицы исключить строки и столбца, соответствующие дублирующим и доминируемым стратегиям.

Пример. Упростить матричную игру, платежная матрица которой имеет вид:

Упрощение матричных игр - student2.ru Bj   Ai   B1   B2   B3   B4   B5
A1
A2
A3
A4
Упрощение матричных игр - student2.ru A5

Упрощение матричных игр - student2.ru Из платежной матрицы видно, что стратегия А2 дублирует стратегию А5, потому любую из них можно отбросить (отбросим стратегию А5). Сравнивая почленно стратегии А1 и А4, видим, что каждый элемент строки А4 не больше соответствующего элемента строки А1. Поэтому применение игроком А доминирующей над А4 стратегии А1 всегда обеспечивает выигрыш, не меньший того, который был бы получен при применении стратегии А4. Следовательно, стратегию А4 можно отбросить. Таким образом, имеем упрощенную матричную игру с платежной матрицей вида:

           
    Упрощение матричных игр - student2.ru
  Упрощение матричных игр - student2.ru   Упрощение матричных игр - student2.ru
 


Упрощение матричных игр - student2.ru Bj   Ai   B1   B2   B3   B4   B5
A1
A2
A3

Из этой матрицы видно, что в ней некоторые стратегии игрока В доминируют над другими: В3 над В2, В4 и В5. Отбрасывая доминируемые стратегии В2, В4 и В5 получаем игру 3x2, имеющей платежную матрицу, вида:

Упрощение матричных игр - student2.ru Bj   Ai   B1   B3
A1
A2
A3

В этой матрице стратегия А3 доминирует как над стратегией А1, так и стратегией А2. Отбрасывая стратегию А3, окончательно получаем игру 2x2 с платежной матрицей

Упрощение матричных игр - student2.ru Bj   Ai   B1   B3
A1
A2

Необходимо отметить, что отбрасывая дублирующие и доминирующие стратегии в игре с седловой точкой, мы все равно придем к игре с седловой точкой, т.е. к решению в чистых стратегиях. Но лучше сразу проверить, не обладает ли игра седловой точкой - это проще, чем сравнивать почленно все строки и все столбцы.

Алгебраические методы решения матричных игр иногда производить проще, если использовать также следующие свойства матричных игр.

Свойство 1. Если ко всем элементам платежной матрицы прибавить (вычесть) одно и тоже число С, то оптимальные смешанные стратегии не изменятся, а только цена игры увеличится (уменьшится) на это число С.

Свойство 2. Если каждый элемент платежной матрицы умножить на положительное число k, то оптимальные смешанные стратегии не изменятся, а цена игры умножится на k.

Отметим, что эти свойства верны и для игр, имеющих седловую точку. Эти два свойства матричных игр применяются в следующих случаях:

1) если матрица игры наряду с положительными имеет и отрицательные элементы, то ко всем ее элементам прибавляют такое число, чтобы исключить отрицательные числа в матрице;

2) если матрица игры имеет дробные числа, то для удобства вычислений элементы этой матрицы следует умножить на такое число, чтобы все выигрыши были целыми числами.

Наши рекомендации