Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов

Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов - student2.ru .

При центральном растяжении (сж.) бруса в поперечном направлении в сечении возникает только нормальное напряжение σz, постоянное во всех точках поперечного сечения и равное Nz/F. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов - student2.ru , где EF – жёсткость бруса при растяжении (сжатии). Чем больше жёсткость бруса, тем меньше деформируется бус при одной и той же силе. 1/(EF) – податливость бруса при растяжении (сжатии).

Центральное растяжение (сжатие) прямого бруса. Статически неопределимые системы. Раскрытие статической неопределимости. Влияние температурного и монтажного факторов. Привести примеры соответствующих расчётов.

Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

Если число линейно-независимых уравнений статики меньше числа неизвестных, входящих в систему этих уравнений, то задача по определению этих неизвестных становится статически неопределимой. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов - student2.ru (На сколько удлинится одна часть, на столько сожмётся вторая).

Нормальные условия - 20º С. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов - student2.ru . f(σ,ε,tº,t)=0 – функциональная зависимость между 4 параметрами.

Опытное изучение механических свойств материалов при растяжении (сжатии). Принцип Сен-Венана. Диаграмма растяжения образца. Разгрузка и повторное нагружение. Наклёп. Основные механические, прочностные и деформационные характеристики материала.

Механические свойства материалов вычисляют с помощью испытательных машин, которые бывают рычажными и гидравлическими. В рычажной машине усилие создаётся при помощи груза, действующего на образец через систему рычагов, а в гидравлической – с помощью гидравлического давления.

Принцип Сен-Венана: Характер распределения напряжения в поперечных сечениях достаточно удалённых (практически на расстояния, равные характерному поперечному размеру стержня) от места приложения нагрузок, продольных сил не зависит от способа приложения этих сил, если они имеют один и тот же статический эквивалент. Однако в зоне приложения нагрузок закон распределения напряжения может заметно отличаться от закона распределения в достаточно удалённых сечениях.

Если испытуемый образец, не доводя до разрушения, разгрузить, то в процессе разгрузки зависимость между силой Р и удлинением Δl образец получит остаточное удлинение.

Если образец был нагружен на участке, на котором соблюдается закон Гука, а затем разгружен, то удлинение будет чисто упругим. При повторном нагружении пропадёт промежуточная разгрузка.

Наклёп (нагартовка) – явление повышения упругих свойств материала в результате предварительного пластического деформирования.

Предел пропорциональности – наибольшее напряжение, до которого материал следует закону Гука.

Предел упругости – наибольшее напряжение, до которого материал не получает остаточных деформаций.

Предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.

Предел прочности – максимальное напряжение, которое может выдержать образец, не разрушаясь.

Физический и условный пределы текучести материалов при испытании образцов на растяжение, предел прочности. Допускаемые напряжения при расчёте на прочность центрально растянутого (сжатого) бруса. Нормативный и фактический коэффициенты запаса прочности. Привести числовые примеры.

В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести принимается условно величина напряжения, при котором остаточная деформация εост=0,002 или 0,2%. В некоторых случаях устанавливается предел εост=0,5%.

max|σz|=[σ]. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов - student2.ru , n>1(!) – нормативный коэффициент запаса прочности.

Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов - student2.ru - фактический коэффициент запаса прочности. n>1(!).

max|σz|растяж≤[σ]растяж; max|σz|сжатия≤[σ]сжатия.

Наши рекомендации