Показатели вариации (колеблемости) признака
Среднее линейное отклонение – на сколько в среднем отличаются индивидуальные значения признака от среднего его значения.
-для несгруппированных данных (первичного ряда):
-для вариационного ряда:
Среднее квадратическое отклонение
- для несгруппированных данных:
- для вариационного ряда:
Дисперсия
- для несгруппированных данных:
- для вариационного ряда:
Коэффициент вариации (используется для характеристики однородности совокупности по исследуемому признаку)
- до 17% – совокупность совершенно однородна, 17%-33% - достаточно однородна, >33% - неоднородна.
Сложение дисперсий
Величина общей дисперсии ( ) характеризует вариацию признака под влиянием всех факторов, формирующих уровень признака у единиц данной совокупности
, - общая средняя арифметическая для всей совокупности
Межгрупповая дисперсия ( ) отражает систематическую вариацию, т. е. различия в величине изучаемого признака, которые возникают под влиянием фактора, положенного в основу группировки
, - средняя в каждой группе, - число единиц в каждой группе
Средняя внутригрупповая дисперсия ( ) характеризует случайную вариацию, возникающую под влиянием других, неучтенных факторов, и не зависит от условия (признака-фактора), положенного в основу группировки.
, где - дисперсия по отдельной группе
или
Равенство:
Корреляционное отношение
, >0,5 – связь между групповым фактором и результирующим признаком – тесная, <0,5 – связь слабая
Показатель асимметрии
, - центральный момент третьего порядка
Средняя квадратическая ошибка: , n – число наблюдений
Если , асимметрия существенна и распределение признака в генеральной совокупности не является симметричным. Если , асимметрия несущественна, ее наличие объясняется влиянием случайных обстоятельств.
- правосторонняя асимметрия, - левосторонняя асимметрия.
Показатель эксцесса (островершинности)
, - центральный момент четвертого порядка
>0 – высоковершинное, < 0 – низковершинное ( = -2 – предел)
Средняя квадратическая ошибка: n – число наблюдений
Кривые распределения
Кривая линия, которая отражает закономерность изменения частот в чистом, исключающем влияние случайных факторов виде, называется кривой распределения.
Плотность распределения (расчет теоретических частот)
, - нормированное отклонение
, - определяется по таблице (приложение 1)
Критерий согласия К. Пирсона (для проверки близости теоретического и эмпирического распределений, для проверки соответствия эмпирического распределения закону нормального распределения)
f – эмпирические частоты в интервале, f’ – теоретические частоты в интервале
Критерий согласия Романовского
, m – число групп, m-3 – число степеней свободы при исчислении частот нормального распределения
Если к<3, то можно принять гипотезу о нормальном характере эмпирического распределения
Критерий Колмогорова
, D – максимальное значение разности между накопленными эмпирическими и теоретическими частотами, n – сумма эмпирических частот
Распределение Пуассона (теоретические частоты)
, n – общее число независимых испытаний, λ – среднее число появления редкого события в n одинаковых независимых испытаниях, m – частота данного события, е=2,71828
Выборочное наблюдение
N – объем генеральной совокупности
n – объем выборочной совокупности (число единиц, попавших в выборку)
- генеральная средняя (среднее значение признака в генеральной совокупности)
- выборочная средняя
р – генеральная доля (доля единиц, обладающих данным признаком в генеральной совокупности)
w – выборочная доля
- генеральная дисперсия
- выборочная дисперсия
- среднее квадратическое отклонение признака в генеральной совокупности
S – среднее квадратическое отклонение признака в выборочной совокупности.
Неравенство Чебышеба
При неограниченном числе наблюдений, независящих друг от друга из генеральной совокупности с вероятностью сколь угодно близкой к 1, можно утверждать, что расхождение между выборочной и генеральной средней будет сколь угодно малой величиной .
Теорема Ляпунова
Дает количественную оценку ошибки. При неограниченном объеме из генеральной совокупности с Р расхождения выборочной и генеральной средней равна интегралу Лапласа
, - нормированная функция Лапласа (интеграл Лапласа)
Р – гарантированная вероятность
t – коэффициент доверия, зависящий от Р
Р | 0,683 | 0,954 | 0,997 |
t |
- предельная ошибка выборки
, - стандартная среднеквадратическая ошибка
, - предельная (максимально возможная) ошибка средней, t – коэффициент кратности средней ошибки выборки, зависящий от вероятности, с которой гарантируется величина предельной ошибки
, - предельная (максимально возможная) ошибка доли
Средняя ошибка (n>30) при случайной повторной выборке:
,
При случайной бесповторной выборке:
,