Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке .
Из теоремы сразу следует, что должна быть непрерывной.
Чтобы исследовать с.к.-непрерывность СП достаточно исследовать непрерывность ее моментных характеристик.
Пример. Пуассоновский процесс.
Пуассоновский процесс имеет следующий физический смысл: при всяком величина численно равна количеству событий из простейшего потока интенсивности , произошедших к моменту времени .
При каждом сечение имеет распределение Пуассона с параметром :
СП сходится по вероятности , но реализации разрывны. Это происходит потому, что разрывы на каждой реализации в своих точках, и вероятность того, что разрыв будет именно в данной точке равна 0.
Дифференцируемость СП
СВ называется с.к.-производной СП в точке , если выполняется
.
Если предел существует, то является с.к.-дифференцируемым в точке . Если дифференцируем в каждой точке , то говорят, что с.к.-дифференцируем на интервале , а семейство СВ называется с.к.-производной СП на .
Теорема. Критерий с.к.-дифференцируемости.
Для того чтобы СП был с.к.-дифференцируем в точке , необходимо, чтобы существовали производные и , и достаточно, чтобы эти производные были непрерывны в точках и соответственно.
Если СП дифференцируем на , то его с.к.-производная имеет матожидание и корреляционную функцию, определяемые как
И .
СП называется дифференцируемым потраекторно на , если почти все его траектории - дифференцируемые функции, т.е.
.
Если потраекторная производная СП , а - с.к.-производная ,то , т.е. СП и являются стохастически эквивалентными.
Пример.
СП: - СВ с равномерным распределением на
- неслучайная величина.
Определить, имеет ли СП с.к.-производную.
,
Определим, имеет ли этот процесс с.к.-производную (выполняются ли условия теоремы).
Производные существуют и непрерывны в каждой точке.
Интегрирование СП
Понятие интеграла от случайного процесса также будем изучать в двух вариантах: с.к.-интеграл и потраекторный интеграл.
Пусть СП на . На возьмем некоторое разбиение , а на каждом из промежутков выберем произвольную точку .
Если существует предел в с.к.-смысле
,
не зависящий от способа разбиения и выбора точек , то СП называется с.к.-интегрируемым на , а случайная величина называется с.к.-интегралом:
.
Теорема. Критерий с.к.-интегрируемости.
Для существованияс.к.-интеграла необходимо и достаточно, чтобы существовали следующие интегралы Римана:
, .
Всякий процесс с.к.-непрерывный на является с.к.-интегрируемым на .