Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке .

Из теоремы сразу следует, что Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru должна быть непрерывной.

Чтобы исследовать с.к.-непрерывность СП достаточно исследовать непрерывность ее моментных характеристик.

Пример. Пуассоновский процесс.

Пуассоновский процесс Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru имеет следующий физический смысл: при всяком Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru величина Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru численно равна количеству событий из простейшего потока интенсивности Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , произошедших к моменту времени Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru .

При каждом Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru сечение Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru имеет распределение Пуассона с параметром Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru : Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru

СП сходится по вероятности Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , но реализации разрывны. Это происходит потому, что разрывы на каждой реализации в своих точках, и вероятность того, что разрыв будет именно в данной точке Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru равна 0.

Дифференцируемость СП

СВ Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru называется с.к.-производной СП Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru в точке Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , если выполняется

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru .

Если предел существует, то Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru является с.к.-дифференцируемым в точке Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru . Если Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru дифференцируем в каждой точке Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , то говорят, что Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru с.к.-дифференцируем на интервале Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , а семейство СВ Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru называется с.к.-производной СП Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru на Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru .

Теорема. Критерий с.к.-дифференцируемости.

Для того чтобы СП был с.к.-дифференцируем в точке , необходимо, чтобы существовали производные и , и достаточно, чтобы эти производные были непрерывны в точках и соответственно.

Если СП Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru дифференцируем на Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , то его с.к.-производная Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru имеет матожидание и корреляционную функцию, определяемые как

И .

СП Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru называется дифференцируемым потраекторно на Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , если почти все его траектории - дифференцируемые функции, т.е.

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru .

Если Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru потраекторная производная СП Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , а Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru - с.к.-производная ,то Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , т.е. СП Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru и Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru являются стохастически эквивалентными.

Пример.

СП: Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru - СВ с равномерным распределением на Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru - неслучайная величина.

Определить, имеет ли СП Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru с.к.-производную.

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru Определим, имеет ли этот процесс с.к.-производную (выполняются ли условия теоремы).

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru

Производные существуют и непрерывны в каждой точке.

Интегрирование СП

Понятие интеграла от случайного процесса также будем изучать в двух вариантах: с.к.-интеграл и потраекторный интеграл.

Пусть СП Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru на Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru . На Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru возьмем некоторое разбиение Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , а на каждом из промежутков выберем произвольную точку Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru .

Если существует предел в с.к.-смысле

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru ,

не зависящий от способа разбиения и выбора точек Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , то СП Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru называется с.к.-интегрируемым на Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , а случайная величина Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru называется с.к.-интегралом:

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru .

Теорема. Критерий с.к.-интегрируемости.

Для существованияс.к.-интеграла Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru необходимо и достаточно, чтобы существовали следующие интегралы Римана:

Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru , Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru .

Всякий процесс с.к.-непрерывный на Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru является с.к.-интегрируемым на Теорема. Для с.к.-непрерывности СП в точке необходимо и достаточно, чтобы матожидание было непрерывно в , а корреляционная функция непрерывна в точке . - student2.ru .

Наши рекомендации