Желаемое принимается за действительное
В сентябре 1955 года в Токио состоялся международный симпозиум. Для молодых японских математиков это была уникальная возможность продемонстрировать остальному миру свои результаты. Они распространили среди участников симпозиума подборку из тридцати шести задач, связанных с той проблемой, над которой они работали, предпослав задачам следующее скромное введение: «Некоторые нерешенные математические задачи. Никакого основательного предварительного исследования не проводилось. Некоторые из предлагаемых задач могут быть тривиальными или уже решенными. Обращаемся к участникам семинара с просьбой прокомментировать любые из них».
Четыре задачи были предложены Таниямой и указывали на любопытную связь между модулярными формами и эллиптическими уравнениями. Эти невинные задачи в конце концов привели к перевороту в теории чисел. Танияма смог вычислить несколько первых членов M -ряда некоторой модулярной формы и понял, что эти члены совпадают с членами E -ряда хорошо известной эллиптической кривой. Танияма вычислил еще несколько членов каждого ряда, и M -ряд модулярной формы и E -ряд эллиптической кривой полностью совпали.
Ютака Танияма (крайний слева) и Горо Шимура (крайний справа) на Международном симпозиуме в Токио (1955)
Это открытие было поразительным, потому что не было никакой видимой причины, по которой модулярную форму можно было связать с эллиптической кривой. Однако, математические ДНК (E- и M -ряды), составляющие самую сущность обоих математических объектов, оказались тождественными. Открытие Таниямы было глубоким по двум причинам. Во-первых, оно наводило на мысль о существовании фундаментальной взаимосвязи между модулярными формами и эллиптическими кривыми — разными объектами математического мира. Во-вторых, оно означало, что математикам, которые уже знали M -ряд модулярной формы, нет необходимости вычислять E -ряд для соответствующей эллиптической кривой, поскольку он в точности совпадает с M -рядом.
Установление взаимосвязи между, казалось бы, различными объектами чрезвычайно плодотворно не только в математике, но и в любой науке. Такая взаимосвязь указывает на какой-то глубокий принцип, лежащий в основе обоих объектов и позволяющий глубже понять их. Например, первоначально физики рассматривали электричество и магнетизм как совершенно не связанные между собой явления, а в XIX веке теоретики и экспериментаторы поняли, что электричество и магнетизм тесно связаны между собой. В результате было достигнуто более глубокое понимание и электричества, и магнетизма. Электрические токи порождают магнитные поля, а магниты могут индуцировать электричество в проводниках, находящихся вблизи магнитов. Это привело к изобретению динамомашин и электромоторов. В конце концов было открыто, что свет представляет собой результат согласованных гармонических колебаний магнитного и электрического полей.
Танияма исследовал несколько других модулярных форм, и в каждом случае M -ряд в точности совпадал с E -рядом эллиптической кривой. Танияма начал размышлять над тем, не может ли каждая модулярная форма находиться в соответствии с некоторым кубическим уравнением. Может быть, у каждой модулярной формы есть такая же ДНК, как у некоторой эллиптической кривой? Именно с этой гипотезой и были связаны задачи, которые Танияма предложил вниманию участников симпозиума.
Идея о том, что каждая эллиптическая кривая связана с какой-то модулярной формой, была настолько необычна, что те, кому довелось взглянуть на задачи Таниямы, считали их не более чем забавным наблюдением. Разумеется, Танияма продемонстрировал, что несколько эллиптических кривых можно поставить в соответствие определенным модулярным формам, но участники семинара сочли, что это не более чем совпадение. По их мнению, гипотеза Таниямы о существовании какой-то более общей и универсальной взаимосвязи не имела под собой достаточного основания. Она опиралась не столько на факты, сколько на интуицию.
Единственным союзником Таниямы был Шимура, твердо веривший в силу и глубину идей своего друга. После симпозиума он стал работать вместе с Таниямой, стремясь довести его гипотезу до такого уровня, на котором остальной мир уже не сможет игнорировать полученные ими результаты. Шимура хотел найти новые факты, подтверждающие существование взаимосвязи между модулярными формами и эллиптическими кривыми. Их сотрудничество временно приостановилось в 1957 году, когда Шимура был приглашен в Принстонский институт высших исследований. По истечении двух лет работы в Америке в качестве приглашенного профессора Шимура намеревался возобновить совместную работу с Таниямой, но этим планам не суждено было сбыться. 17 ноября 1958 года Ютака Танияма покончил жизнь самоубийством.
Смерть гения
Шимура все еще хранит ту открытку, которую Танияма послал ему в ответ на просьбу вернуть том журнала «Mathematische Annalen». Он также хранит письмо, которое Танияма прислал ему, когда он находился в Принстоне. В письме не было ни малейшего намека на то, что произошло всего лишь двумя месяцами позднее. До сего дня Шимура не может понять, что толкнуло Танияму на самоубийство. «Я был очень озадачен. Озадачен — наиболее точное слово. Разумеется, я был очень опечален. Все это было так неожиданно. Я получил от него письмо в сентябре, а погиб он в начале ноября. В голове у меня это просто не укладывается. Разумеется, позднее до меня доходили разные слухи, и я пытался как-то примириться с его смертью. Некоторые говорили, что он потерял уверенность в себе, но не как математик».
У Горо Шимуры и поныне хранится последнее письмо, которое он получил от своего друга и коллеги Ютаки Таниямы
Друзья Таниямы недоумевали, так как он незадолго до самоубийства полюбил Мисако Сузуки и намеревался в том году вступить с ней в брак. В некрологе, опубликованном в журнале «Bulletin of the London Mathematical Society», Горо Шимура вспоминает помолвку Таниямы и Мисако и последние недели жизни своего друга:
«Получив известие об их помолвке, я был несколько удивлен, так как смутно ощущал, что она была не в его вкусе, но никаких дурных предчувствий у меня не было. Позднее мне рассказали, что они сняли квартиру, по-видимому, более комфортабельную, вместе купили кое-какую кухонную утварь и занялись приготовлениями к свадьбе. Будущее казалось безоблачным и им, и их друзьям. Катастрофа обрушилась внезапно.
Утром в понедельник 17 ноября 1958 года комендант аспирантского общежития, где жил Танияма, обнаружил его мертвым. На столе лежало предсмертное письмо. Оно заняло три страницы из блокнота, в котором он обычно производил вычисления. Первый абзац письма гласил: "Вплоть до вчерашнего дня у меня не было определенного намерения покончить с собой. Но многие обратили внимание на то, что последнее время я очень устал и физически, и умственно. Что касается причины самоубийства, то она не вполне понятна мне самому, но во всяком случае не является результатом чего-нибудь конкретного. Могу только сказать, что нахожусь в таком умонастроении, что утратил всякую уверенность в моем будущем. Возможно, кого-нибудь мое самоубийство встревожит или до какой-то степени огорчит. Я искренне надеюсь, что этот случай не омрачит будущее этого человека. Во всяком случае, я не могу отрицать того, что мой поступок отдает предательством, но прошу отнестись к нему снисходительно, как к последнему поступку, который я совершаю по своей воле. Всю свою жизнь я делал то, что хотел."
Далее Танияма очень скрупулезно описывает, как следует распорядиться его имуществом, какие книги и пластинки он брал в библиотеке или у друзей. В частности, в его посмертном письме говорится: "Я хотел бы оставить пластинки и проигрыватель Мисако Сузуки, если ей не будет неприятно получить их от меня". Затем он поясняет, на чем остановился, читая курсы математического анализа и линейной алгебры для студентов, и приносит своим коллегам извинения за те неудобства, которые причинит им его поступок. Это был один из самых блестящих и новаторских умов своего времени, ушедший из жизни по собственному желанию. Всего лишь за пять дней до самоубийства ему исполнился тридцать один год».
Через несколько недель после самоубийства Таниямы трагедия повторилась: его невеста Мисако Сузуки также покончила с собой. В ее посмертном письме говорилось: "Мы обещали друг другу, что куда бы мы ни отправились, мы никогда не будем разлучаться. Теперь он ушел. Я должна также уйти, чтобы быть вместе с ним".