Интеграция с помощью рядов.
С помощью степенных рядов возможно интегрировать дифференциальные уравнения.
Рассмотрим линейное дифференциальное уравнение вида:
Если все коэффициенты и правая часть этого уравнения разлагаются в сходящиеся в некотором интервале степенные ряды, то существует решение этого уравнения в некоторой малой окрестности нулевой точки, удовлетворяющее начальным условиям.
Это решение можно представить степенным рядом:
Для нахождения решения остается определить неизвестные постоянныеci.
Эта задача решается методом сравнения неопределенных коэффициентов. Записанное выражение для искомой функции подставляем в исходное дифференциальное уравнение, выполняя при этом все необходимые действия со степенными рядами (дифференцирование, сложение, вычитание, умножение и пр.)
Затем приравниваем коэффициенты при одинаковых степенях хв левой и правой частях уравнения. В результате с учетом начальных условий получим систему уравнений, из которой последовательно определяем коэффициентыci.
Отметим, что этот метод применим и к нелинейным дифференциальным уравнениям.
28. Численное интегрирование — вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.
Численное интегрирование применяется, когда:
1. Сама подынтегральная функция не задана аналитически. Например, она представлена в виде таблицы (массива) значений в узлах некоторой расчётной сетки.
2. Аналитическое представление подынтегральной функции известно, но её первообразная не выражается через аналитические функции.
Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке.
Метод трапеций — метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подынтегральной функции на многочлен первой степени, то есть линейную функцию.
Формула Симпсона относится к приёмам численного интегрирования. Суть метода заключается в приближении графика функции на отрезке параболой.
Метод Гаусса — метод численного интегрирования, позволяющий повысить алгебраический порядок точности методов на основе интерполяционных формул путём специального выбора узлов интегрирования без увеличения числа используемых значений подынтегральной функции.
Метод интеграции Эйлера.
Простейшим из численных методов решения дифференциальных уравнений является метод Эйлера. В основе метода Эйлера лежит идея графического построения решения дифференциального уравнения, однако этот метод дает одновременно и способ нахождения искомой функции в численной (табличной) форме.
Геометрическая иллюстрация метода Эйлера приведена на рис. Вместо интегральной кривой в реальности получается совокупность прямых (так называемая ломаная Эйлера).
Методы численного интегрирования дифференциальных уравнений, в которых решение получается от одного узла к другому, называются пошаговыми. Метод Эйлера — простейший представитель семейства пошаговых методов.
Наиболее используемым эмпирическим методом оценки точности, как метода Эйлера, так и других пошаговых методов приближенного численного интегрирования обыкновенных дифференциальных уравнений является способ двойного прохождения заданного отрезка — с шагом h и с шагом h/2. Совпадение соответствующих десятичных знаков в полученных двумя способами результатах дает эмпирические основание считать их верными (хотя полной уверенности в этом быть не может).
30.Метод интеграции Адамса
Метод Адамса — конечноразностный многошаговый метод численного интегрирования обыкновенных дифференциальных уравнений первого порядка. В отличие от метода Рунге-Кутты использует для вычисления очередного значения искомого решения не одно, а несколько значений, которые уже вычислены в предыдущих точках.
Идея методов Адамса – использовать не промежуточные вычисления значений правой части дифференциального уравнения внутри отрезка , а значения правой части на предыдущих шагах (сделать метод методом «с памятью»).