Краткие теоретические сведения
Тема 1. Определители.
Квадратной матрицей порядканазывается квадратная таблица из чисел ( , ): , состоящая из строк и столбцов. У квадратной матрицы различают главную диагональ: и побочную диагональ: . Любой квадратной матрице порядка можно поставить в соответствие число , равное алгебраической сумме слагаемых, составленных определённым образом из элементов матрицы ,называемое определителем матрицы. Кратко обозначается , .
Определителем 1-ого порядка называется число .
Определителем 2-ого порядка называется число
.
Определителем 3-его порядка называется число
.
Минором элемента называется определитель , полученный из определителя вычёркиванием -ой строки и -ого столбца.
Алгебраическим дополнением элемента называется его минор , взятый со знаком :
.
Определителем порядка называется число
Разложением определителя по -ой строке ( ) называется соотношение: .
Разложением определителя по -ому столбцу ( ) называется соотношение:
Определители обладают следующими свойствами:
1) определитель не изменится при замене всех его строк столбцами с теми же номерами;
2) определитель изменит знак на противоположный, если переставить местами любые две строки (два столбца) определителя;
3) общий множитель элементов какой-либо строки (столбца) можно вынести за знак определителя;
4) определитель равен нулю, если он содержит нулевую строку (столбец), две одинаковые или пропорциональные строки (столбца);
5) определитель не изменится, если к какой-либо строке (столбцу) прибавить другую строку (столбец), умноженную на любое число;
6) определитель треугольного вида (когда все элементы, лежащие по одну сторону одной из его диагоналей равны нулю) равен произведению диагональных элементов: .
Тема 2. Матрицы.
Матрицей размера называется прямоугольная таблица из чисел ( , ): , состоящая из строк и столбцов. Если необходимо указать размеры матрицы, то пишут .
Если , то матрица называется квадратной.
Нулевой называется матрица , все элементы которой равны нулю, например: . Единичной называется квадратная матрица , на главной диагонали которой стоят единицы, а все остальные элементы равны нулю, например: . Треугольной называется квадратная матрица , все элементы которой расположенные по одну сторону от главной диагонали равны нулю, например: . Трапециевидной (ступенчатой) называется матрица , все элементы которой, расположенные ниже элементов равны нулю, например: .
Матрицы и называются равными и пишут , если они одинакового размера и их соответствующие элементы равны: , , .
Матрицы можно транспонировать, складывать, вычитать, умножать на число, умножать на другую матрицу.
Транспонированной к матрице называется матрица , столбцами которой являются соответствующие строки матрицы .
Суммой (разностью) матриц и одного размера , называется матрица того же размера, для которой:
, , .
Произведением матрицы размера на число называется матрица того же размера, для которой: , , .
Линейной комбинацией матриц иодного размера , называется матрица того же размера ( и - произвольные числа), для которой: , , ,
Произведением матрицы на матрицу называется матрица , каждый элемент которой вычисляется по правилу:
, , .
Операция умножения матрицы на матрицу определена не для всех матриц, а только для таких у которых число столбцов левой матрицы равно числу строк правой матрицы . Такие матрицы называются согласованнымидля умножения. Поэтому прежде чем выполнять операцию умножения матрицы на матрицу следует проверить их согласованность для умножения и определить размерность матрицы-произведения (если умножение матриц возможно): . Особенность операции умножения матриц состоит в том, что в общем случае: , т.е. переместительное свойство места не имеет.
Элементарными преобразованиями матрицы называются:
1) перестановка строк (столбцов);
2) умножение строки (столбца) на число, отличное от нуля;
3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число;
4) вычёркивание нулевой строки (столбца).
Матрицы и , полученные одна из другой в результате элементарных преобразований называются эквивалентнымии пишут .
Обратнойк квадратной матрице порядка , называется матрица того же порядка, если: , где - единичная матрица порядка .
Квадратная матрица называется невырожденной, если её определитель . Обратная матрица всегда существует для невырожденных матриц.
Основными методами вычисления обратной матрицы являются:
Метод присоединённой матрицы. Если -невырожденная матрица, то , где - присоединённая матрица, для которой: . Здесь - алгебраические дополнения элементов матрицы .
В частности, если , то
Метод элементарных преобразований.Для данной квадратной матрицы порядка строится прямоугольная матрица размера приписыванием к справа единичной матрицы. Далее, с помощью элементарных преобразований над строками, матрица приводится к виду , что всегда возможно, если - невырожденная.
Матричныминазываются уравнения вида: , , ,
где матрицы - известны, матрица - неизвестна. Если квадратные матрицы и - невырожденные, то решения матричных уравнений записываются, соответственно, в виде: , , .
Минором -ого порядка матрицы размера называется определитель квадратной матрицы порядка , образованной элементами матрицы , стоящими на пересечении произвольно выбранных её строк и столбцов . Максимальный порядок отличных от нуля миноров матрицы , называется её рангом и обозначается или , а любой минор порядка , отличный от нуля – базисным минором.
Тема 3. Системы линейных уравнений. Модель Леонтьева.
…Система уравнений вида: называется системой линейных уравнений с неизвестными. Числа называются коэффициентами системы, - свободными членами системы, - неизвестными системы.
В матричной форме система имеет вид: , где , , .Здесь -матрица системы, -матрица-столбец неизвестных, -матрица-столбец свободных членов.
Если , то система называется однородной, в противном случае неоднородной.
Система, матрица которой является треугольной с диагональными элементами , называется треугольной. Система, матрица которой является трапециевидной, называется трапециевидной.
Решением системы называется всякий упорядоченный набор чисел , обращающий каждое уравнение системы в равенство. Совокупность всех решений называется множеством решений системы.
Система называется совместной, если она имеет, по крайней мере, одно решение; определённой, если она имеет только одно решение; неопределённой, если она имеет бесконечно много решений; несовместной, если она не имеет решений.
Однородная система уравнений всегда совместна, так как всегда имеет, по крайней мере, нулевое решение . Треугольная система является определённой, трапециевидная система – неопределённой.
Две системы называются эквивалентными, если множества их решений совпадают.
Элементарными преобразованиями систем уравнений называются:
1) перестановка уравнений;
2) перестановка местами слагаемых в каждом из уравнений системы;
3) умножение уравнения на число, отличное от нуля;
4)прибавление к уравнению другого, умноженного на любое число;
5) вычёркивание уравнения вида: .
Основными точными методами решения систем линейных уравнений являются методы: Крамера, обратной матрицы и Гаусса.
Если число уравнений в системе совпадает с числом неизвестных и определитель матрицы системы , то система имеет единственное решение, которое можно найти:
а) методом Крамера по формулам: , , где - определитель, получаемый из определителя матрицы системы заменой -ого столбца на столбец свободных членов;
б) методом обратной матрицы по формуле .
Методом Гаусса находят решение произвольной системы линейных уравнений. Метод состоит в приведении системы уравнений, с помощью элементарных преобразований, к системе специального вида, эквивалентной исходной, решение которой очевидно. Преобразования по методу Гаусса выполняют в два этапа. Первый этап называют прямым ходом, второй - обратным.
В результате прямого хода выясняют: совместна или нет система и если совместна то, сколько имеет решений - одно или бесконечно много, а также, в случае бесконечного множества решений, указывают базисные и свободные неизвестные для записи общего решения системы. Преобразования прямого хода выполняют, как правило, над расширенной матрицей системы , которую получают, приписывая справа к матрице системы столбец свободных членов . В результате элементарных преобразований строк и перестановкой столбцов, матрица системы должна быть приведена к матрице треугольного или трапециевидного вида с элементами . При этом, система уравнений, матрица которой , является треугольной с диагональными элементами , будет иметь единственное решение; система уравнений, матрица которой , является трапециевидной с элементами , будет иметь бесконечно много решений. Если, при выполнении преобразований расширенной матрицы , в преобразованной матрице появится строка , где , то это говорит о несовместности исходной системы уравнений. Базисные неизвестные указывают, выписывая базисный минор преобразованной матрицы системы . Базисными являются неизвестные преобразованной системы, столбцы коэффициентов при которых образуют базисный минор (определитель максимального порядка, отличный от нуля). Свободными являются неизвестные, не являющиеся базисными.
В результатеобратного хода находят решение системы, записывая его в виде общего решения, если их бесконечно много. Преобразования обратного хода часто выполняют, над уравнениями системы, соответствующей последней расширенной матрице прямого хода. В случае единственного решения, его получают, находя последовательно значения всех неизвестных из уравнений системы, начиная с последнего. В случае, когда решений бесконечно много, их записывают в виде общего решения. Для этого свободным неизвестным придают разные произвольные постоянные значения: , ,…, , и последовательно из уравнений системы, начиная с последнего, находят значения всех базисных неизвестных. Полученное решение называют общим. Придавая произвольным постоянным, конкретные значения, находят частные решения системы уравнений.
Уравнениямимежотраслевого баланса, описывающими процесс производства и потребления продукции -отраслевой экономикой, называют уравнения ( ) , где - объём выпуска валовой продукции -ой отраслью, - объём продукции -ой отрасли, потребляемый -ой отраслью для производства своей продукции, - объём выпуска конечной продукции -ой отраслью, предназначенной для реализации в непроизводственной сфере.
Если предположить, что (гипотеза линейности), где - постоянные числа, характеризующие технологию производства (показывают затраты продукции -ой отрасли на производство 1 единицы продукции -ой отрасли) и называемые коэффициентами прямых затрат, то уравнения межотраслевого баланса запишутся в виде: ( ). Их называют уравнениями линейного межотраслевого баланса или линейной моделью Леонтьева многоотраслевой экономики и записывают, как правило, в матричном виде: , где - единичная матрица; - матрица коэффициентов прямых затрат; и - векторы (матрицы-столбцы) валового и конечного продукта, соответственно.
Основная задача линейного межотраслевого баланса состоит в отыскании вектора , который при известной матрице прямых затрат обеспечивает заданный вектор конечного продукта . Вектор находится по формуле , где - матрица коэффициентов полных затрат, элемент которой показывает величину валового выпуска продукции -ой отрасли, необходимой для обеспечения выпуска 1 единицы конечного продукта -ой отрасли. Решение такой задачи существует только для продуктивных матриц .
Матрица называется продуктивной, если для любого вектора существует решение уравнения Леонтьева: .
Матрица будет продуктивной, если сумма элементов по каждому её столбцу (строке) не превосходит единицы: , причём хотя бы для одного столбца (строки) эта сумма строго меньше единицы.
Чистой продукцией отрасли называется разность между валовой продукцией этой отрасли и затратами продукции всех отраслей на производство данной отрасли. Объёмы выпуска чистой продукции -ой отрасли вычисляют по формулам: ( ).
Тема 4. Системы векторов. N-мерное векторное пространство. Евклидово пространство.
Арифметическим вектором называют упорядоченную совокупность из чисел: и обозначают . Числа называют компонентами вектора , число компонент называют его размерностью.
Векторы и называют равными, если они одинаковой размерности и их соответствующие компоненты равны: , .
Суммой векторов и одной размерности, называют вектор той же размерности, для которого: , .
Произведением вектора на число называют вектор той же размерности, для которого: , .
Линейной комбинациейвекторов и одной размерности, называют вектор той же размерности ( и - произвольные числа), для которого: , .
Множество всех -мерных векторов, в котором введены операции сложения и умножения на число, удовлетворяющие определённым требованиям (аксиомам) называют векторнымпространствоми обозначают .
Систему векторов называют линейно зависимой, если найдутся числа , одновременно, такие, что (где - нулевой вектор), в противном случае, систему называют линейно независимой.
Базисом системы векторов называют упорядоченную систему векторов , удовлетворяющую условиям:
1) , ; 2) система линейно независима; 3) для любого вектора найдутся числа такие, что . Коэффициенты , однозначно определяемые вектором , называют координатами вектора в базисе , а формулу называют разложениемвектора по базису и пишут: .
В пространстве базисом является каждая упорядоченная система из линейно независимых векторов: . Формулу называют разложениемвектора по базису , коэффициенты - координатами вектора в базисе и пишут .
Всякая упорядоченная система из векторов образует базис , если определитель, столбцами которого являются компоненты векторов , не равен нулю.
Пространство , в котором введено скалярное произведение векторов, удовлетворяющее определённым требованиям (аксиомам), называют евклидовым. Скалярным произведением двух векторов и называют число: .
Тема 5. Линейные операторы. Собственные числа и векторы.
Операторомназывается закон (правило), по которому каждому вектору ставится в соответствие единственный вектор , и пишут или В дальнейшем, рассматривается случай (преобразование пространства ). Оператор называется линейным, если для любых векторов и действительных чисел выполнено условие: .
Если - базис пространства , томатрицей линейного оператора в базисе называется квадратная матрица порядка , столбцами которой являются столбцы координат векторов . Между линейными операторами, действующими в и квадратными матрицами порядка , существует взаимно однозначное соответствие, что позволяет оператор представить в матричном виде , где - матрицы-столбцы координат векторов , - матрица оператора в базисе .
Для линейных операторов, действующих в вводятся следующие операции: 1) сложение операторов: ; 2) умножение операторов на число: ; 3) умножение операторов: .