Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов

Метод моментов

Для получения неизвестных оценок параметров Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов приравниваются к соответствующим теоретическим аналогам, полученным для предполагаемого теоретического закона распределения.

Предположим, что Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru - плотность распределения случайной величины Х. Определим с помощью этой плотности k каких-либо моментов случайной величины, например, первые k начальных моментовпо формулам

Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru .

По выборке наблюдений случайной величины найдем значения соответствующих выборочных моментов

Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru

Попарно приравнивая теоретические моменты Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru их выборочным аналогам, получаем систему из kуравнений с k неизвестными, разрешая которую получаем искомые значения.

Согласно методу моментов, параметры Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru выбираются с таким расчетом, чтобы несколько важнейших числовых характеристик (моментов) теоретического распределения были равны соответствующим статистическим характеристикам. Например, если теоретическая кривая Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru зависит только от двух параметров Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru и Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru , эти параметры выбираются так, чтобы математическое ожидание Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru и дисперсия Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru теоретического распределения совпадали с соответствующими статистическими характеристиками Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru и Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru Если кривая Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru зависит от трех параметров, можно подобрать их так, чтобы совпали первые три момента и т.д. При выравнивании статистических рядов может оказаться полезной специально разработанная система кривых Пирсона, каждая из которых зависит в общем случае от четырех параметров. При выравнивании эти параметры выбираются с тем расчетом, чтобы сохранить первые четыре момента статистического распределения (математическое ожидание, дисперсию, третий и четвертый моменты). Следует заметить, что при выравнивании статистических рядов нерационально пользоваться моментами порядка выше четвертого, так как точность вычисления моментов резко падает с увеличением их порядка.

Метод наименьших квадратов

При сглаживании эмпирических зависимостей очень часто исходят из так называемого принципа или метода наименьших квадратов, считая, что наилучшим приближением к эмпирической зависимости в данном классе функций является такое, при котором сумма квадратов отклонений обращается в минимум. При этом вопрос о том, в каком именно классе функций следует искать наилучшее приближение, решается уже не из математических соображений, а из соображения, связанных с физикой решаемой задачи, с учетом характера полученной эмпирической кривой и степени точности произведенных наблюдений. Часто принципиальный характер функции, выражающей исследуемую зависимость, известен заранее из теоретических соображении, из опыта же требуется получить лишь некоторые численные параметры, входящие в выражение функции; именно эти параметры подбираются с помощью метода наименьших квадратов.

Задача восстановления некоторой функции Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru методом наименьших квадратов требует, чтобы мера отклонения экспериментальных значений от выбранной функции была минимальной в заданных Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru точках Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru В качестве таких пар точек, как правило, выбирают середины интервалов гистограммы и высоты, им соответствующие. Затем строится функция расхождений теоретических и эмпирических значений в точках Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru , которая подлежит минимизации

Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru

Требуется подобрать коэффициенты Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru так, чтобы величина Iбыла наименьшей. Для решения этой задачи находят частные производные от функции Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru по всем переменным Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru , приравнивают их к нулю и решают полученную систему уравнений

Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов - student2.ru

Наши рекомендации