Размещения с повторениями
Пусть существуют n различных элементов. Выберем из них m штук, действуя по следующему принципу: возьмем любой элемент, но не будем устанавливать его в какой-либо ряд, а просто запишем под номером 1 его название, сам же элемент вернем к остальным элементам. Затем опять из всех n элементов выберем один, запишем его название под номером 2 и снова вернем элемент обратно. Будем выполнять эти операции, пока не получим m названий. Размещения с повторениями вычисляются по формуле:
.
Задача: сколько четырехзначных номеров можно составить из 10 цифр?
Решение: имеем размещения с повторениями из 10 элементов по 4, их число: .
Сочетания
Сочетания без повторений.
Сочетаниями называют комбинации, составленные из n различных элементов по k (k =< n) элементов, которые отличаются хотя бы одним элементом. Сочетания обозначаются: Cnk C - первая буква французского слова combinasion - сочетание.
Составим из n элементов всевозможные сочетания по k элементов в каждом. Их будет Cnk . Внутри каждого сочетания, состоящего из k элементов, образуем всевозможные комбинации, учитывающие порядок следования в них элементов. Таких комбинаций будет Pk, т.к. мы в нашем сочетании образовываем перестановки. Всего различных комбинаций из n элементов по k в каждой, отличающихся друг от друга либо составом (элементами), либо порядком их следования, будет Cnk • Pk . Но такие комбинации называются размещениями. Таким образом, Ank = Cnk • Pk, тогда:
.
Задача: в шахматном турнире участвует 7 человек; сколько партий будет сыграно, если между любыми двумя участниками должна быть сыграна партия?
Решение: имеем сочетания без повторений из 7 элементов по 2; их число: .
Сочетания с повторениями.
Если в сочетаниях некоторые элементы (или все) могут оказаться одинаковыми, то такие сочетания называются сочетаниями с повторениями. Их число определяется по формуле: .
Задача: сколько наборов из 7 пирожных можно составить, если в продаже имеется 4 сорта пирожных?
Решение: имеем сочетания с повторениями из четырех по 7 по, их число: .
3.Графы
3.1.Основные понятия
3.1.1.История теории графов
3.1.2.Определения
3.1.3.Смежности и инцидентность
3.1.4.Изоморфизм графов
3.2.Представление графов в ЭВМ
3.2.1.Требования к представлению графов
3.2.2.Матрица смежности
3.2.3.Матрица инциденций
3.3.Геометрическая реализация графов
3.4.Маршруты, цепи, циклы
3.4.1.Определения
3.4.2.Эйлеровы графы
3.4.3.Гамильтоновы графы
3.5.Заключение
Графы
Среди дисциплин и методов дискретной математики теория графов и особенно алгоритмы на графах находят наиболее широкое применение в программировании. Дело в том, что теория графов предоставляет очень удобный язык для описания программных (да и многих других) моделей.
Этот тезис можно пояснить следующей аналогией. Понятие отношения также можно полностью выразить через понятие множества. Однако независимое определение понятия отношения удобнее - введение специальных терминов и обозначений упрощает изложение теории и делает ее более понятной.
То же относится и к теории графов. Стройная система специальных терминов и обозначений теории графов позволяют просто и доступно описывать сложные и тонкие вещи.
Особенно важно наличие наглядной графической интерпретации понятия графа. Само название «граф» подразумевает наличие графической интерпретации. Картинки позволяют сразу «усмотреть» суть дела на интуитивном уровне, дополняя и украшая утомительные рациональные текстовые доказательства и сложные формулы.
2.1.Основные понятия
История теории графов
Теория графов многократно переоткрывалась разными авторами при решении различных прикладных задач.
1. Задача о Кенигсбергских мостах. Обойти все четыре части суши, пройдя по каждому мосту один раз, и вернуться в исходную точку (рис. 3.1). Эта задача была решена Эйлером в 1736 году.
Рис. 3.1. Иллюстрация к задаче о Кенигсбергских мостах
2. Задача о трех домах и трех колодцах. Имеется три дома и три колодца. Провести от каждого дома к каждому колодцу тропинку так, чтобы тропинки не пересекались (рис. 3.2). Эта задача была решена Куратовским в 1930 году.
Рис. 3.2. Иллюстрация к задаче о трех домах и трех колодцах
Предметом первых задач теории графов были различные конфигурации, состоящие из точек и соединяющих их линий. При этом несущественно: являются ли эти линии прямыми или кривыми, длинными или короткими, тонкими или толстыми; важно только то, какие точки они соединяют. Т.о. граф – это абстрактное математическое понятие.
Определения
Графом G(V,E) называется совокупность двух множеств - непустого множества V (множества вершин) и множества Е неупорядоченных пар различных элементов множества V (Е - множество ребер).
G(V,E): , E VxV.
Число вершин графа G обозначим р, а число ребер – q.
р(G) = |V| q(G) = |E|.
Часто рассматриваются следующие родственные графам объекты.
1. Если элементами множества Е являются упорядоченные пары, то граф называется ориентированным (илиорграфом). В этом случае элементы множества V называются узлами, а элементы множества - дугами (G(V, )).
2. Если элементом множества Е может быть пара одинаковых (не различных) элементов V, то такой элемент множества Е называется петлей, а граф называется графом с петлями (или псевдографом).
3. Если Е является не множеством, а набором, содержащим несколько одинаковых элементов, то эти элементы называются кратными ребрами, а граф называется мультиграфом.
Далее выражение: граф G(V,E) означает неориентированный граф без петель и кратных ребер.
Обычно граф изображают диаграммой: вершины - точками (или кружками), ребра - линиями.
Примеры.
1. . .
Т.о. это неориентированный граф с петлей и кратными ребрами.
Рис. 3.3. Неориентированный граф с петлей и кратными ребрами.
2. . .
Т.о. это ориентированный граф с петлей и кратными ребрами.
Рис. 3.4. Ориентированный граф с петлей и кратными ребрами.
3. . , т.о.
Рис. 3.5. Неориентированный граф с петлей.