Замечательные пределы
Первый замечательный предел: .
Второй замечательный предел: .
Пример 1. Вычислить пределы функции при
Решение.В задаче следует найти предел частного. С этой целью необходимо вычислить пределы числителя и знаменателя дроби, подставив в них предельное значение аргумента.
а) .
Здесь применима теорема о пределе частного.
б) .
При подстановке в числитель и знаменатель дроби убеждаемся, что их значения равны нулю, поэтому теорема о пределе частного здесь не применима. В данном случае говорят, что имеется неопределенность вида .
Неопределенность вида при может быть раскрыта сокращением дроби на множитель вида(х–х0), который обращает числитель и знаменатель дроби в нуль, в данном случае на(х+4). Поэтому, следует разложить на множители числитель и знаменатель дроби .
3х2+10х – 8 = 0; | 4х2+15х– 4 = 0; |
D= | D= |
3х2+10х–8 = 3(х+4)(х–2/3) = | 4х2+15х – 4 = 4(х+4)(х–1/4 ) = |
= (х+4)(3х–2). | = (х+4)(4х–1). |
Таким образом,
в)
Здесь применима теорема о пределе частного, так как существуют конечные пределы числителя и знаменателя, и предел знаменателя не равен нулю.
г)
Здесь использована теорема о связи бесконечно малой и бесконечно большой функций.
д) .
Пределы числителя и знаменателя дроби равны . В этом случае говорят, что имеется неопределенность вида «бесконечность на бесконечность». Теорема о пределе частного здесь не применима.
Чтобы раскрыть неопределенность вида при , каждый член числителя и знаменателя дроби делят на x в наивысшей степени (в нашем примере на х2), отчего величина дроби не изменится, но исчезнет неопределенность.
так как
(по теореме о связи бесконечно большой и бесконечно малой функций).
Замечание. Полезно запомнить, что при предел отношения многочленов c одинаковыми наивысшими степенями равен отношению коэффициентов при этих степенях.
В нашем примере, коэффициенты при наивысшей степени х2многочленов равны 3 и 4, поэтому и предел дроби равен .
Ответы.
Пример 2.Найти предел .
Решение. Так как tg5x ~ 5x и sin7x ~ 7x при х ® 0, то, заменив функции эквивалентными бесконечно малыми, получим:
МЕТОДЫ ДИФФЕРЕНЦИАЛЬНОГО И ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ
8. Дифференцирование функций одной переменной
8.1. Основные определения
8.1.1.Дифференциальное исчисление – раздел математики, в котором изучаются производные и дифференциалы функций, исследуются функции и решаются прикладные задачи (например, задачи на экстремум).
8.1.2.Дифференцирование– операции нахождения производных (частных производных) функций и их дифференциалов.
8.1.3.Дифференцируемая функция– функция одного или нескольких переменных называется дифференцируемой в некоторой точке, если в данной точке существует дифференциал этой функции. Для дифференцируемости функции необходимо и достаточно существование конечной производной для функции одной переменной или чтобы существовали в этой точке непрерывные частные производные для функции нескольких переменных.
8.1.4.Производная– основное понятие дифференциального исчисления, характеризующее скорость изменения функции при изменении аргумента x. Пусть функция определена в некоторой окрестности точки . Предел отношения приращения функции в этой точке (если он существует) к приращению аргумента, когда , называется производной функции в точке . Обозначения производной: или или или . Таким образом, . Численно производная равна угловому коэффициенту касательной, проведённой к кривой в данной точке (тангенсу угла наклона касательной к оси Ox). Если существует производная функции , её называют второй производной и пишут: . Аналогично определяется производная любого (целого) порядка n: . Производная называется первой производной или производной первого порядка, вторая, третья производная и т.д. – производными высших порядков. Вычисление производной называется дифференцированием функции.
8.1.5. Производной функции по аргументу x называется предел отношения ее приращения к приращению аргумента x, когда приращение аргумента стремится к нулю:
.
Если этот предел конечный, то функция y=f(x) называется дифференцируемой в точке x. Если же этот предел есть ∞, то говорят, что функция y=f(x) имеет в точке x бесконечную производную.
8.2. Механический смысл производной:скорость есть первая производная пути по времени, т.е. .
8.3. Геометрический смысл производной:тангенс угла наклона касательной к графику функции равен первой производной этой функции, вычисленной в точке касания, т.е.
Уравнение касательной к графику функции в точке :
Уравнение нормали к графику функции в точке :
Таблица производных
Рассмотрим примеры.
Найти производные функций:
Пример 1:
Решение:
+
Пример 2:
Решение:
Пример 3:
Решение: