Общая методика решения

Цель работы

Настоящая курсовая работа является завершающим разделом дисциплины «Вычислительная математика и программирование» и требует от студента в процессе ее выполнения решения следующих задач:

а) практического освоения типовых вычислительных методов прикладной информатики; б) совершенствования навыков разработки алгоритмов и построения программ на языке высокого уровня.

Практическое выполнение курсовой работы предполагает решение типовых инженерных задач обработки данных с использованием методов матричной алгебры, решения систем линейных алгебраических уравнений численного интегрирования. Навыки, приобретаемые в процессе выполнения курсовой работы, являются основой для использования вычислительных методов прикладной математики и техники программирования в процессе изучения всех последующих дисциплин при выполнении курсовых и дипломных проектов.

Методические указания

Методические рекомендации по аппроксимации методом наименьших квадратов

Постановка задачи

При изучении зависимостей между величинами важной задачей является приближенное представление (аппроксимация ) этих зависимостей с помощью известных функций или их комбинаций, подобранных надлежащим образом. Подход к такой задаче и конкретный метод её решения определяются выбором используемого критерия качества приближения и формой представления исходных данных.

Методика выбора аппроксимирующей функции

Аппроксимирующую функцию Общая методика решения - student2.ru выбирают из некоторого семейства функций, для которого задан вид функции, но остаются неопределенными (и подлежат определению) её параметры Общая методика решения - student2.ru т.е.

Общая методика решения - student2.ru

(1)

Определение аппроксимирующей функции φ разделяется на два основных этапа:

Подбор подходящего вида функции Общая методика решения - student2.ru ;

Нахождение ее параметров в соответствии с критерием МНК.

Подбор вида функции Общая методика решения - student2.ru представляет собой сложную задачу, решаемую методом проб и последовательных приближений. Исходные данные, представленные в графической форме (семейства точек или кривые), сопоставляется с семейством графиков ряда типовых функций, используемых обычно для целей аппроксимации. Некоторые типы функций Общая методика решения - student2.ru , используемых в курсовой работе, приведены в таблице 1.

Более подробные сведения о поведении функций, которые могут быть использованы в задачах аппроксимации, можно найти в справочной литературе. В большинстве заданий курсовой работы вид аппроксимирующей функции Общая методика решения - student2.ru задан.

Общая методика решения

После того как выбран вид аппроксимирующей функции Общая методика решения - student2.ru (или эта функция задана) и, следовательно, определена функциональная зависимость (1), необходимо найти в соответствии с требованиями МНК значения параметров С1, С2, …, Сm. Как уже указывалось, параметры должны быть определены таком образом, чтобы значение критерия в каждой из рассматриваемых задач было наименьшим по сравнению с его значением при других возможных значениях параметров.

Для решения задачи подставим выражение (1) в соответствующее из выражений и проведем необходимые операции суммирования или интегрирования (в зависимости от вида I). В результате величина I, именуемая в дальнейшем критерием аппроксимации, представляется функцией искомых параметров

Общая методика решения - student2.ru

(2)

Последующее сводиться к отысканию минимума этой функции переменных Сk; определение значений Сk=Ck *, к=1,m, соответствующих этому элементу I, и является целью решаемой задачи.

Типы функций: Таблица 1

Вид функции Название функции
Y=C1+C2·x Линейная
Y=C1+C2·x+C3·x2 Квадратичная (параболическая)
Y= Общая методика решения - student2.ru Рациональная(полином n степени)
Y=C1+C2· Общая методика решения - student2.ru Обратно пропорциональная
Y=C1+C2· Общая методика решения - student2.ru Степенная дробно-рациональная
Y= Общая методика решения - student2.ru Дробно-рациональная(первой степени)
Y=C1+C2·XC3 Степенная
Y=C1+C2·aC3·x Показательная
Y=C1+C2·logax Логарифмическая
Y=C1+C2·Xn (0<n<1) Иррациональная, алгебраическая
Y=C1·sinx+C2cosx Тригонометрические функции (и обратные к ним)

Возможны следующие два подхода к решению этой задачи: использование известных условий минимума функции нескольких переменных или непосредственное отыскание точки минимума функции каким – либо из численных методов.

Для реализации первого из указанных подходов воспользуемся необходимым условием минимума функции (1) нескольких переменных, в соответствии с которыми в точке минимума должны быть равны нулю частные производные этой функции по всем ее аргументам

Общая методика решения - student2.ru

Полученные m равенств следует рассматривать как систему уравнений относительно искомых С1, С2,…, Сm. При произвольном виде функциональной зависимости (1) уравнения (3) оказывается нелинейным относительно величин Ck и их решение требует применение приближенных численных методов.

Использование равенства (3) дают, лишь необходимые, но недостаточные условия минимума (2). Поэтому требуется уточнить, обеспечивают ли найденные значения Ck * именно минимум функции Общая методика решения - student2.ru . В общем случае такое уточнение выходит за рамки данной курсовой работы, и предлагаемые для курсовой работы задания подобраны так, что найденное решение системы (3) отвечает именно минимуму I. Однако, поскольку величина I неотрицательна (как сумма квадратов) и нижняя её граница есть 0 (I=0), то, если существует решение системы (3) единственно, оно отвечает именно минимуму I.

При представлении аппроксимирующей функции Общая методика решения - student2.ru общим выражением (1) соответствующие нормальным уравнениям (3) оказываются нелинейными относительно искомых Ск. их решение может быть сопряжено со значительными трудностями. В таких случаях предпочтительным являются непосредственный поиск минимума функции Общая методика решения - student2.ru в области возможных значений ее аргументов Ск , не связанный с использованием соотношений (3). Общая идея подобного поиска сводиться к изменению значений аргументов Ск и вычислению на каждом шаге соответствующего значения функции I до минимального или достаточно близко к нему.

Наши рекомендации