Формализм и теоретико-множественные основания математики 9 страница

Такие чисто математические науки, как алгебра и геометрия, являются науками чистого разума, не подкрепляемыми опытом и не получающими от него помощи, изолированными или могущими быть изолированными от всех внешних и случайных явлений… Вместе с тем это идеи, рожденные внутри нас, обладание которыми в сколько-нибудь ощутимой степени есть следствие нашей врожденной способности, проявление человеческого начала.

В докладе, прочитанном в 1883 г. на заседании Британской ассоциации поощрения науки, один из крупнейших алгебраистов XIX в. Артур Кэли заявил: «Мы обладаем априорными знаниями, не зависящими не только от того или иного опыта, но и от всякого опыта вообще… Эти знания составляют вклад нашего разума в интерпретацию опыта».

В то время как одни (например, Гамильтон и Кэли) представляли математику как «внедрившуюся» в человеческий разум, другие считали, что она существует в мире, лежащем вне человека. Трудно понять, как могли просуществовать до начала XX в. представления о математике как о едином реальном мире математических идей. Корни таких представлений восходят к Платону (гл. I). Эти представления неоднократно возрождали, в особенности Лейбниц, проводивший различия между истинами разума и истинами факта (последние остаются истинными во всех возможных мирах). Даже Гаусс, первым по достоинству оценивший неевклидову геометрию, был убежден в абсолютной истинности арифметики (числа) и анализа (гл. IV).

Веру в существование объективного реального мира математики разделял один из искуснейших аналитиков XIX в. Шарль Эрмит (1822-1901). В письме математику Томасу Яну Стильтьесу Эрмит утверждал:

Я убежден в том, что числа и функции анализа не являются произвольным продуктом нашего духа. Я верю, что они лежат вне нас с той же необходимостью, как предметы объективной реальности, а мы обнаруживаем или открываем и исследуем их так же, как это делают физики, химики и зоологи.[174]

По другому случаю Эрмит сказал: «В математике мы больше слуги, чем господа».

Многие из математиков XX в., несмотря на споры по поводу оснований, заняли ту же позицию. Создатель теории множеств и трансфинитных чисел Георг Кантор считал, что математики не изобретают понятия и теоремы, а открывают их. Математические понятия и теоремы существуют независимо от человеческого мышления. Себя самого Кантор считал репортером и секретарем, записывающим эти понятия и теоремы. Годфри Гарольд Харди, скептически относившийся к предлагаемым человеком доказательствам, утверждал в 1929 г.:

Мне кажется, что ни одна философия не может вызвать сочувствие у математика, если она так или иначе не признает незыблемости и безусловной годности математической истины. Математические теоремы истинны или ложны, и их истинность или ложность абсолютно не зависит от того, известны ли нам эти теоремы. В некотором смысле математическая истина является частью объективной реальности.

Аналогичные взгляды Харди выразил и в своей книге «Апология математика» [39]*:

Свою позицию я сформулирую догматически во избежание малейшей неясности. Я считаю, что математическая реальность лежит вне нас, что наша функция заключается в открытии и наблюдении ее и что теоремы, которые мы доказываем и высокопарно называем своими «творениями», в действительности являются не более чем записями наших наблюдений.

Выдающийся французский математик XX в. Жак Адамар (1865-1963) утверждал в работе «Исследование психологии процесса изобретения в области математики», что, «хотя истина еще не известна нам, она предсуществует и неизбежно подсказывает нам путь, которым мы должны следовать» [70].

Гёдель также разделял мнение о существовании трансцендентального мира математики. Что касается теории множеств, то он считал вполне допустимым рассматривать все множества как реальные объекты:

Мне кажется, что допущение о существовании таких объектов столь же законно, как и допущение о существовании физических объектов, и что имеется не меньше оснований верить в их существование. Они необходимы для получения удовлетворительной теории математики в том же смысле, в каком физические тела необходимы для удовлетворительной теории наших чувственных восприятий, и в обоих случаях невозможно интерпретировать утверждения, которые мы хотим высказать об этих сущностях, как утверждения о «данных», т.е., в последнем случае, о реальных чувственных восприятиях.

Некоторые из приведенных выше высказываний принадлежат ученым двадцатого столетия, которых не очень беспокоили основания математики. Еще более удивительно, что и кое-кто из лидеров различных школ в основаниях математики, например Гильберт, Алонзо Черч и члены группы Бурбаки, утверждали, что математические понятия и свойства существуют в некотором объективном смысле и могут быть постигнуты человеческим разумом. Таким образом, математическую истину открывают, а не изобретают, и в результате открытия возникает не математика, а человеческое знание математики.

Людей, разделяющих подобные взгляды, часто называют платонистами. Хотя Платон и верил в то, что математика существует в некотором идеальном мире независимо от людей, его учение содержит много несовместимого с современными воззрениями; поэтому здесь апелляция к платонизму не столько помогает, сколько вводит в заблуждение.

Все утверждения о существовании объективного, единого ядра математики ничего не говорят о том, где же находится математика. Они указывают лишь, что математика существует в некотором «потустороннем» мире, своего рода воздушном замке, а человек лишь открывает ее. Аксиомы и теоремы отнюдь не только творения человеческого разума — их скорее можно сравнить с сокровищами, скрытыми в недрах, которые можно извлечь на поверхность, если запастись терпением и копать все глубже и глубже. Но существование аксиом и теорем не зависит от человека, как не зависит от него, например, существование планет.

Является ли математика коллекцией алмазов, спрятанных в недрах Вселенной и постепенно извлекаемых на поверхность, или коллекцией искусственных драгоценных камней, созданных человеком и сверкающих так ярко, что они ослепили тех математиков, кто уже отчасти был ослеплен гордостью за свои творения?

Если существует мир сверхчувственных и трансцендентально абсолютных объектов и если наши логические и математические утверждения представляют собой всего лишь записи наблюдений этих объектов, то не существуют ли противоречия и ложные утверждения в том же смысле, в каком существуют истинные утверждения? Сорные семена ложности и противоречивости могут давать столь же пышные всходы, как и семена истинные и прекрасные. Дьявол сеет свои семена и собирает жатву наряду с богом истины. Разумеется, платонисты могли бы возразить, что ложные утверждения и противоречия возникают только из-за неадекватности усилий, прилагаемых человеком для достижения истины.

Иной точки зрения (согласно которой математика — это только продукт человеческого мышления) придерживаются интуиционисты. Эта точка зрения восходит к Аристотелю. Однако если одни интуиционисты считают, что истина гарантируется разумом, то другие утверждают, что математика представляет собой не незыблемый свод непреложных знаний, а творение человеческого разума, которому свойственно ошибаться. Классическое высказывание на эту тему, появившееся задолго до современных споров, мы находим в «Мыслях» Паскаля: «Истина — слишком тонкая материя, а наши инструменты слишком тупы, чтобы ими можно было прикоснуться к истине, не повредив ее. Достигнув истины, они сминают ее и отклоняются в сторону, скорее ложную, нежели истинную».[175]По утверждению главы интуиционистов Аренда Рейтинга, в наше время никто не может говорить об истинной математике, т.е. о математике как едином своде правильных знаний.

Герман Ганкель, Рихард Дедекинд и Карл Вейерштрасс считали математику творением человека. В письме Генриху Веберу Дедекинд утверждал: «По-моему, то, что мы понимаем под числом, само по себе есть не класс, а нечто новое…. созданное нашим разумом. Мы божественная раса и обладаем… способностью творить». Ту же мысль Вейерштрасс выразил такими словами: «Истинный математик всегда поэт». Ученик Рассела философ Людвиг Виттгенштейн (1889-1951) считал, что математик — изобретатель, а не открыватель. Все эти и многие другие мыслители рассматривали математику как нечто далеко выходящее за пределы эмпирических данных или рациональных дедуктивных умозаключений. В пользу их мнения свидетельствует хотя бы тот факт, что такие элементарные понятия, как иррациональные и отрицательные числа, не являются ни дедукциями из эмпирических данных, ни объектами, заведомо существующими в некотором внешнем мире.

Герман Вейль с большой иронией относился к вечным истинам. В книге «Философия математики и естественных наук»[93]* он писал:

Гёделю с его истовой верой в трансцендентальную логику хочется думать, что наша логическая оптика лишь немного не в фокусе, и надеяться, что после небольших коррекций мы будем видеть четко, и тогда всякий согласится, что мы видим верно. Но того, кто не разделяет этой веры, смущает высокая степень произвола в системе Z [Цермело] или даже в системе Гильберта… Никакой Гильберт не сможет убедить нас в непротиворечивости на вечные времена. Мы должны быть довольны, если какая-нибудь простая аксиоматическая система математики пока выдерживает проверку наших сложных математических экспериментов. Если на более поздней стадии появятся расхождения, то мы еще успеем изменить основания.

Лауреат Нобелевской премии американский физик и философ Перси Уильямс Бриджмен в своей книге «Логика современной физики» (1946) решительно отвергает существование объективного мира математики: «Это общеизвестная истина, очевидная с первого взгляда, что математика — изобретение человека». Теоретическая наука — игра математического воображения. Все, кто считал математику творением человека, утверждали также, что математика испытала на себе сильное влияние тех культур, в рамках которых она развивалась. Математические «истины» в такой же мере зависимы от людей, как восприятие цвета или английский язык. Лишь относительно широкое принятие математических доктрин — по сравнению с политическими, экономическими и религиозными — создает иллюзию, будто математика представляет собой свод истин, объективно существующих вне человека. Математика может существовать независимо от любого человека, но не от культуры, которая его окружает. Перефразируя Германа Вейля, можно сказать, что математика не отдельное техническое достижение, а неотъемлемая часть человеческого существования во всей его общности — и в этом она находит свое обоснование.

Тех, кто разделяет взгляд на математику как на творение человека, по существу, можно было бы назвать кантианцами, ибо они усматривают источник математики в организующей силе человеческого разума. Но эти современные кантианцы подчеркивают, что математика связана не с морфологией или физиологией мозга, а с его деятельностью. Разум организует, используя эволюционные методы. Творческая деятельность разума постоянно порождает все более новые, высшие формы мышления. В математике человеческий разум отчетливо видит, что он способен создать совокупность знаний, которые ему интересны или полезны. Область его созидательной деятельности не замкнута. Формулируемые разумом понятия применимы как к существующим, так и к вновь возникающим областям знания. Разум обладает способностью возводить структуры, охватывающие опытные данные и упорядочивающие их. Источник математики лежит в прогрессивном развитии самого разума.

Острые споры о природе математики и потере ею прежнего статуса свода общепринятых незыблемых истин, бесспорно, свидетельствует в пользу концепции математики, созданной человеком. Как сказал Эйнштейн, «каждый, кто осмеливается взять на себя роль судьи во всем, что касается Истины и Знания, терпит крушение под смех богов».

По иронии судьбы, мыслители Века разума, рассматривая математику как пример способности человека мыслить и получать истины, без тени сомнения утверждали, что разум разрешит все человеческие проблемы. Современные мыслители, даже если некоторые из них разделяют веру в могущество разума, заведомо не считают математику эталоном или парадигмой. Такой поворот событий не так далек от интеллектуальной катастрофы. Математика по-прежнему остается самой длительной и последовательной попыткой человека создать точное и эффективное мышление, а достижения математики по-прежнему служат мерилом того, на что способен человеческий разум. Математика устанавливает верхний предел, которого мы можем лишь надеяться достичь во всех рациональных областях. К сожалению, споры относительно того, что такое «настоящая» математика, не прекращаются. Именно поэтому Гильберт так страстно стремился восстановить истинность в смысле объективных, достоверных умозаключений. В его статье 1925 г. «О бесконечном» говорится: «Где же еще искать надежность и истинность, если даже само математическое мышление дает осечки?» ([50], с. 349.)

Озабоченность Гильберта судьбами математики явственно слышится в его докладе «Проблемы обоснования математики» на Международном математическом конгрессе в Болонье (1928):

Что было бы с истинностью наших знаний вообще и как обстояло бы дело с существованием и прогрессом науки, если бы в математике не было достоверной истины? В наше время нередко даже в специальных изданиях и в открытых докладах высказывается сомнение и уныние по поводу науки; это есть в некотором роде оккультизм, который я считаю вредным.

([50], с. 399.)

Непрестанные, нескончаемые поиски абсолюта могут показаться менее привлекательными, чем реальное достижение абсолюта, но Гете уже давно усмотрел в этих поисках спасение человеческого рода:

Wer immer strebend sich bemüht

Den können wir erlösen.

[Спасти можно лишь того,

Кто неустанно борется за свое спасение.]

Не будучи столь уверенным в существовании абсолютных истин, один из выдающихся математиков современности Андре Вейль утверждает, что занятия математикой необходимо продолжать, хотя математика теперь уже не то прежнее величественное творение человеческой мысли. Вот что он говорит:

Для нас, чьи плечи ноют под тяжестью наследия греческой мысли, кто идет по стопам героев эпохи Возрождения, цивилизация немыслима без математики. Подобно постулату о параллельности, постулат о том, что математика выживет, утратил свою «очевидность». Но если первый постулат перестал быть необходимостью, то без второго мы жить бы не смогли.

Будущее математики никогда не внушало особых надежд. Природа математики никогда не была вполне понятной. Тонкий анализ очевидного привел к нескончаемой цепи осложнений. Но математика продолжает бороться с проблемами, возникающими в ее основаниях. Как сказал Декарт, «я буду продолжать до тех пор, пока не установлю нечто несомненно истинное или по крайней мере не устраню все сомнения в том, что ничего несомненно истинного не существует».

Если верить Гомеру, боги обрекли царя Коринфа Сизифа на тяжкое наказание после смерти: он должен вкатывать на гору огромный камень; но как только камень почти достигает вершины, он начинает скатываться вниз, к подножию горы. Сизиф не мог питать никаких иллюзий, что его напрасный труд когда-нибудь завершится. Математики почти инстинктивно мобилизуют всю свою волю и мужество, чтобы дополнить и укрепить основания своей науки. Их борьба также может оказаться нескончаемой, а труд — напрасным. Но современные Сизифы не сдаются.

XV

Авторитет природы

Я возношу молитву, твердо зная,

Что не предаст Природа никогда

Ее так верно любящего сердца.

Уордсворт

Формализм и теоретико-множественные основания математики 9 страница - student2.ru

Для получения новых результатов математики могут избрать любое из множества соперничающих направлений. Поскольку внутренних критериев, позволяющих отдать предпочтение одному направлению перед другим или как-то обосновать принятое решение, не существует, математик вынужден при выборе направления руководствоваться внешними соображениями. Наиболее важным из них по-прежнему остается традиционный и наиболее объяснимый довод в пользу создания новой и развития уже существующей математики — ее ценность для других наук. Ставшую ныне очевидной неопределенность в вопросах, связанных с истинными основаниями математики, и зыбкость ее логики можно в какой-то мере игнорировать (хотя и не исключить полностью), если акцентировать внимание на внешних приложениях математики. Последуем же завету Эмерсона и «построим в материи дом для ума». Из априорных соображений невозможно установить, будут ли получаемые математические теоремы непосредственно применимы, или же они, что тоже неплохо, в сочетании с разумными физическими принципами приведут к физически значимым результатам. Приложения служат своего рода практическим критерием, которым мы проверяем математику. Теоремы, приводящие к правильным результатам, с каждым разом можно применять все увереннее. Например, если мы, постоянно используя аксиому выбора, получаем подтверждаемые физическим экспериментом результаты, то сомнения в приемлемости этой аксиомы если и не рассеятся полностью, то по крайней мере уменьшатся.

С исторической точки зрения апелляция к приложениям не означает радикального изменения сути математики, как это может показаться современным блюстителям математической строгости. Математические понятия и аксиомы берут свое начало из наблюдений реального мира. Даже законы логики, как теперь стало ясно, являются не более чем продуктом опыта. Проблематика, обдумывая которую математик приходит к своим теоремам, и даже наводящие соображения, касающиеся методов доказательства теорем, черпаются из того же источника. О ценности, или значимости, результатов, полученных из аксиом, лет семьдесят пять назад судили по пригодности этих результатов для описания реального мира. Почему бы и теперь не судить о правильности математики в целом по тому, насколько хорошо она продолжает описывать и предсказывать природные феномены? Если правильность математики оценивать по ее приложимости к реальному миру, то никакого абсолютного критерия истинности нет и быть не может. Теорема может великолепно сработать в n случаях и дать осечку в (n+1)- м случае. Одно-единственное расхождение с опытом полностью дисквалифицирует теорему. Видоизменяя формулировку теоремы, математики могут прийти (и неоднократно приходили) к поправкам, делающим новый вариант вполне применимым — а значит, «истинным».

Среди тех, кто отстаивал наличие у математики эмпирических оснований и критериев, видное место занимал Джон Стюарт Милль (1806-1873). Он допускал, что математика обладает большей общностью, чем некоторые физические науки, но видел «оправдание» математики лишь в том, что ее утверждения проверены и подтверждены шире и основательнее, чем утверждения физических наук. Следовательно, заключал Милль, глубоко заблуждаются те, кто считает, что математические теоремы качественно отличаются от подтвержденных гипотез и теорий других наук. Причина подобного заблуждения заключается в том, что эти люди считают математические теоремы вполне достоверными, а физические теории — весьма вероятными или всего лишь подкрепляемыми опытом.

Милль обосновал свои взгляды философскими соображениями задолго до того, как возникла современная дискуссия по основаниям математики. Тем больше оснований быть прагматиками у тех, кто работал и работает в основаниях математики. Как заметил Гильберт, «и познаешь их по плодам их». Еще одно высказывание Гильберта по этому поводу — «Успех здесь [в математике] необходим; он является высшей инстанцией, перед которой все преклоняются» ([50], с. 340) — относится к 1925 г.

Мнение Гильберта разделяет один из выдающихся специалистов по основаниям математики поляк Анджей Мостовский. На конгрессе, состоявшемся в Польше в 1953 г., он заявил:

Единственная непротиворечивая точка зрения, согласующаяся не только со здравым смыслом, но и с математической традицией, сводится по существу к допущению того, что источник и высший смысл понятия числа (не только натурального, но и вещественного) лежит в опыте и практической применимости. То же относится и к понятиям теории множеств в том объеме, в каком они необходимы для классических областей математики.

Мостовский идет дальше. Он утверждает, что математика — естественная наука. Ее понятия и методы восходят к опыту, и любые попытки обосновать математику безотносительно к ее естественнонаучному происхождению, приложениям и даже истории обречены на провал.

Более удивительно другое: с тезисом, провозглашающим, что о «правильности» математики можно судить по степени ее применимости к физическому миру, согласился интуиционист Вейль. Вейль внес огромный вклад в математическую физику[176], поэтому, сколь ни твердо он отстаивал интуиционистские принципы, ему, разумеется, не хотелось жертвовать полезными результатами из-за чрезмерной приверженности этим принципам. В своей «Философии математики и естественных наук» (1949) Вейль сделал такое признание:

Насколько более убедительны и ближе к фактам эвристические аргументы и последующие систематические построения в общей теории относительности Эйнштейна или в квантовой механике Гейзенберга — Шредингера. Подлинно реалистическая математика наряду с физикой должна восприниматься как часть теоретического описания единого реального мира и по отношению к гипотетическим обобщениям своих оснований занять такую же трезвую и осторожную позицию, какую занимает физика.

Вейль открыто выступает за то, чтобы рассматривать математику как одну из естественных наук. Математические теоремы, подобно физическим утверждениям, могут быть формально не обоснованными, но экспериментально проверяемыми гипотезами. Иногда они подлежат переделке, но надежным критерием их правильности служит их соответствие реальности.

Еще дальше пошел выдающийся представитель формалистской школы Хаскелл Б. Карри. В его «Основаниях математической логики»[177](1963) мы читаем:

Нужна ли математике для своего оправдания абсолютная надежность? Зачем, скажем, нам так уж нужно быть уверенными в непротиворечивости теории или в том, что ее можно вывести с помощью абсолютно определенной интуиции чистого времени, прежде чем использовать эту теорию? Ведь ни к какой другой науке мы не предъявляем таких требований. В физике, например, теории всегда гипотетичны; мы принимаем теорию, коль скоро на ее основе можно делать полезные предсказания, и видоизменяем или отвергаем ее, коль скоро этого сделать нельзя. Именно так случалось и с математическими теориями, когда в связи с обнаружением в них противоречий приходилось модифицировать не оспариваемые до того времени доктрины. Так почему мы не можем поступать так же и в будущем?

([125], с. 38-39.)

Выдающийся математический логик Уиллард Ван Орман Куайн, предпринявший много безуспешных попыток упростить «Основания математики» Рассела и Уайтхеда, также выразил желание (по крайней мере, заявил о нем сравнительно недавно) воспользоваться как критерием математических результатов физической истинностью следующих из них выводов. В работе 1958 г., опубликованной в серии «Философское значение современной логики» Куайн утверждал:

Теорию множеств и всю математику разумнее представлять себе так, как мы представляем теоретические разделы естественных наук, — состоящими из истин, или гипотез, правильность которых подтверждается не столько сиянием безупречной логики, сколько косвенным систематическим вкладом, который они вносят в организацию эмпирических данных в естественных науках.

Джон фон Нейман, внесший весомый вклад в развитие формализма и теории множеств, охотно воспользовался тем же выходом из тупика, в котором оказалась современная математика. В знаменитой статье «Математик» (1947) фон Нейман, в частности, попытался объяснить, почему большинство математиков продолжают пользоваться классической математикой, хотя ни одной из нескольких школ в основаниях математики не удалось убедительно обосновать ее:

В конце концов именно классическая математика позволяет получать результаты, которые как полезны, так и красивы, и хотя прежней уверенности в ее надежности не стало, классическая математика все же покоится на столь же прочном основании, как, например, существование электрона. Следовательно, тот, кто принимает естественные науки, не может не принять классическую систему математики.

([105], с. 92.)

Итак, статус математики ничем не лучше статуса физики.

Даже Рассел, провозгласивший в 1901 г., что здание математической истины — логической и одновременно физической — останется незыблемым навеки, в работе 1914 г. был вынужден признать, что «наше знание геометрии физического мира носит синтетический, а не априорный характер». Иначе говоря, геометрия не следует из одной лишь логики. Во втором издании «Оснований математики» (1926) Рассел пошел на еще большие уступки. По его словам, в правильность логики и математики так же, как и в правильность уравнений Максвелла, мы «верим потому, что из наблюдений убеждаемся в правильности некоторых логических следствий, к которым они приводят».

Еще более удивительное утверждение высказал в 1950 г. Гёдель:

Роль пресловутых «оснований» сравнима с той функцией, которую в физических теориях выполняют поясняющие что-либо гипотезы… Так называемые логические или теоретико-множественные основания теории чисел или любой другой вполне сформировавшейся математической теории по существу объясняют, а не обосновывают их, так же, как в физике, где истинное предназначение аксиом состоит в объяснении явлений, описываемых физическими теоремами, а не в обосновании этих теорем.

Итак, все эти ведущие ученые, работающие в основаниях математики, сходятся на том, что попытка создать приемлемую для всех, логически безупречную математику провалилась. Математика — одна из разновидностей человеческой деятельности, и она подвержена всем слабостям и порокам, присущим всему человеческому. Любая формальная псевдологическая система не более чем псевдоматематика, фикция, даже легенда, хотя и не лишенная оснований.

Тот же критерий «правильности» математики приняли как рабочую гипотезу и многие другие выдающиеся математики, логики и философы, занятые вопросами оснований математики. Правильность математики достаточно твердо (хотя, возможно, и не абсолютно надежно) гарантируется ее применимостью; даже если время от времени в здание математики приходится вносить кое-какие поправки, то и это ничего не меняет по существу дела. Как сказал Уордсворт, «природной тверди верит ум, что строит навсегда».

Может показаться, что, принимая прагматический критерий применимости математики к естественным наукам, логицисты, формалисты, интуиционисты и представители теоретико-множественного направления в основаниях математики отказались тем самым от своих собственных принципов и убеждений. Но хотели они того или не хотели, принятый ими критерий являлся критерием истинности математики во все времена. Что заставляло верить в свою науку математиков, работавших в длившееся не одно столетие смутное время ее нелогичного развития (гл. V-VIII)? Не подозревая, что предлагаемые доказательства страдают дефектами, они считали, что им удалось получить некие результаты. Им было известно, что ни отрицательные, ни иррациональные, ни комплексные числа, как и покоящиеся на этом шатком основании алгебра и анализ, не имели под собой никакого логического фундамента. Но математики продолжали работать, считая, что применимость полученных ими результатов сама по себе является гарантией их правильности.

Надежда на применимость математики к естественным наукам (можно сказать, к эмпирическим данным) привела к результату, о котором стоит рассказать. Евклидов идеал предполагал, что, начав с аксиом, истинность которых не вызывает сомнений, мы затем станем выводить из них теоремы по раз и навсегда установленным логическим правилам, исключающим любую ошибку в рассуждениях. Полагаясь на применимость к физике, мы обращаем вспять всю концепцию математики. Если полученные на завершающем этапе заключения истинны в силу их применимости, то аксиомы по крайней мере разумны, хотя, возможно, и не единственны (могут существовать другие аксиомы, приводящие к тем же заключениям). Истинность, понимаемая как полезность (или применимость) математики, против течения не поплывет.

Лидерам различных школ в основаниях математики случалось иногда надолго отходить от собственных убеждений. Так, один из основателей интуиционизма Леопольд Кронекер получил превосходные результаты в области алгебры, никак не согласующиеся с его собственными стандартами строгости. Как заметил Пуанкаре, Кронекер предал забвению собственную философию. Брауэр, провозгласив философию интуиционизма в своей диссертации 1907 г., следующее десятилетие посвятил плодотворным исследованиям в области топологии, в которых полностью игнорировал интуиционистские доктрины.

Итогом всей этой бурной и разнообразной деятельности стал вывод о том, что правильная математика должна определяться не основаниями (каковыми бы те ни были), безошибочность которых можно и оспаривать, — о «правильности» математики следует судить по ее применимости к реальному миру. Математика — такая же эмпирическая наука, как и ньютоновская механика. Математика правильна, лишь покуда она действует, а если что-то не срабатывает, то в нее необходимо вводить надлежащие поправки. Математика не свод априорных знаний, каковой ее считали в течение более чем двух тысячелетий; она не абсолютна и не неизменна.

Наши рекомендации