Линейные уравнения высших порядков
§1. Однородное уравнение.
Линейным уравнением n-го порядка называется уравнение вида:
f(x). (1.1)
Если при всех рассматриваемых значениях функция f(x) равна нолю, то это уравнение называется однородным, в противном случае – неоднородным.
Предполагаем, что коэффициенты и свободный член f(x) определены и непрерывны в интервале . Тогда уравнение (1.1) имеет единственное решение , определенное во всем интервале и удовлетворяющее начальным условиям: , причем начальные данные можно задавать произвольно, а нужно брать из интервала .
Линейное однородное дифференциальное уравнение (лоду) всегда имеет нулевое решение .
Для построения общего решения лоду достаточно знать линейно независимых в интервале частных решений , т.е. таких решений, для которых тождество
, ,
где - постоянные числа, может выполняться только при . Такая система решений называется фундаментальной. Чтобы система решений лоду была фундаментальной, необходимо и достаточно, чтобы ее определитель Вронского
был отличен от нуля хотя бы в одной точке из интервала . В действительности, в этом случае определитель Вронского отличен от нуля во всех точках интервала .
Если найдена фундаментальная система решений лоду, то формула
, (1.2)
где - произвольные постоянные, дает общее решение этого уравнения в области .
§2. Линейное однородное дифференциальное уравнение с постоянными коэффициентами.
Это уравнение имеет вид:
, (2.1)
где - постоянные вещественные числа. Это уравнение имеет фундаментальную систему решений , определенную при всех и состоящую из степенных, показательных и тригонометрических функций. Соответствующее ей общее решение:
определено в области , т.е. во всем пространстве .
Построение фундаментальной системы решений лоду делается методом Эйлера, который состоит в том, что частное решение лоду ищется в виде , где - некоторое число, подлежащее определению. Подставляя эту функцию в уравнение (2.1), после сокращения на получим характеристическое уравнение:
Его корни называются характеристическими числами уравнения (2.1). Различают три случая.
1. Все корни характеристического уравнения различны и вещественны. Обозначим их через . Тогда фундаментальной системой решений будут: , а общее решение имеет вид: .
2. Все корни характеристического уравнения различны, но среди них имеются комплексные. Пусть – комплексный корень характеристического уравнения. Тогда тоже будет корнем этого уравнения. Этим двум корням соответствуют два линейно независимых частных решения: . Записав линейно независимые частные решения, соответствующие другим сопряженным парам комплексных корней и всем вещественным корням, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (2.1).
3. Среди корней характеристического уравнения имеются кратные. Пусть - вещественный k-кратный корень. Тогда ему соответствует линейно независимых частных решений вида , а в формуле общего решения – выражение вида . Если - комплексный корень характеристического уравнения кратности , то ему и сопряженному с ним корню той же кратности соответствуют линейно независимых частных решений вида:
В формуле общего решения этим корнем соответствует выражение вида:
.
Записав линейно независимые частные решения указанного выше вида, соответствующие всем простым и кратным вещественным корням, а также сопряженным парам простых и кратных комплексных корней, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (2.1).