Раздел «Отношения. Функции»
Вариант № 1
1. Задано бинарное отношение r = {<1, 1>, <1, 3>, <3, 1>, <3, 4>, <4, 3>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не рефлексивного, не симметричного и транзитивного.
3. Дана функция f(x) = x2 + ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 2
1. Задано бинарное отношение r = {<1, 3>, <3, 1>, <3, 4>, <4, 3>, <4, 4>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не симметричного, но рефлексивного и транзитивного.
3. Дана функция f(x) = x2 + e-x, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 3
1. Задано бинарное отношение r = {<2, 2>, <2, 3>, <3, 2>, <3, 4>, <4, 1>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не транзитивного, но рефлексивного и симметричного.
3. Дана функция f(x) = x + ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 4
1. Задано бинарное отношение r = {<1, 1>, <1, 2>, <2, 1>, <3, 3>, <4, 4>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x2 + y2 = 25?
3. Дана функция f(x) = x3 + ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 5
1. Задано бинарное отношение r = {<1, 2>, <2, 1>, <3, 4>, <4, 3>, <4, 4>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не симметричного, не рефлексивного и транзитивного.
3. Дана функция f(x) = x + e--x, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 6
1. Задано бинарное отношение r = {<2, 2>, <2, 3>, <3, 2>, <3, 1>, <4, 1>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения транзитивного, рефлексивного и антисимметричного.
3. Дана функция f(x) = x + ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 7
1. Задано бинарное отношение r = {<1, 1>, <1, 2>, <2, 1>, <2, 4>, <4, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения рефлексивного, симметричного и транзитивного.
3. Дана функция f(x) = x 2 + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 8
1. Задано бинарное отношение r = {<2, 2>, <2, 3>, <3, 2>, <3, 4>, <4, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения транзитивного, рефлексивного и антисимметричного.
3. Дана функция f(x) = x + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 9
1. Задано бинарное отношение r = {<1, 2>, <2, 3>, <1, 3>, <1, 1>, <2, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения транзитивного, рефлексивного и симметричного.
3. Дана функция f(x) = sinx + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 10
1. Задано бинарное отношение r = {<1, 1>, <2, 3>, <1, 3>, <3, 1>, <3, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x = 2y?
3. Дана функция f(x) = lnx + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 11
1. Задано бинарное отношение r = {<1, 1>, <2, 4>, <1, 4>, <4, 1>, <4, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не транзитивного, не рефлексивного и не симметричного.
3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и являющейся сюръективной, инъективной, биективной.
Вариант № 12
1. Задано бинарное отношение r = {<1, 1>, <3, 4>, <1, 4>, <4, 1>, <4, 3>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x + y = 100?
3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и не являющейся сюръективной, инъективной, биективной.
Вариант № 13
1. Задано бинарное отношение r = {<1, 1>, <1, 2>, <2, 1>, <3, 1>, <1, 3>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не транзитивного, не рефлексивного и симметричного.
3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и являющейся сюръективной, но не инъективной.
Вариант № 14
1. Задано бинарное отношение r = {<1, 1>, <2, 2>, <2, 1>, <2, 4>, <4, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения рефлексивного, симметричного и транзитивного.
3. Дана функция f(x) = x 2 , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 15
1. Задано бинарное отношение r = {<1, 1>, <1, 2>, <2, 1>, <2, 4>, <4, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения эквивалентности.
3. Дана функция f(x) = x 2 + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 16
1. Задано бинарное отношение r = {<b, b>, <b, c>, <c, b>, <c, a>, <d, a>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения частичного порядка на множестве целых чисел..
3. Дана функция f(x) = x 2 +lnx, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 17
1. Задано бинарное отношение r = {<x, x>, <y, z>, <x, z>, <z, x>, <z, y>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения транзитивного и симметричного.
3. Дана функция f(x) = x + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 18.
1. Задано бинарное отношение r = {<1, 1>, <1, a>, <a, 1>, <a, 4>, <4, a>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения рефлексивного и транзитивного.
3. Дана функция f(x) = x 2 + 2x, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 19
1. Задано бинарное отношение r = {<1, 1>, <2, 2>, <2, 3>, <3, 2>, <3, 3>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x 2 – y2 = 0?
3. Дана функция f(x) = 2x + , отображающая множество положительных действительных чисел во множество всех действительных чисел. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 20
1. Задано бинарное отношение r = {<1, 1>, <1, 2>, <2, 1>, <3, 3>, <4, 4>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не рефлексивного, не симметричного и не транзитивного.
3. Дана функция f(x) = x3ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 21
1. Задано бинарное отношение r = {<1, 3>, <3, 4>, <1, 4>, <4, 1>, <4, 3>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения частичного порядка на множестве треугольников на плоскости.
3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и не являющейся сюръективной, инъективной, биективной.
Вариант № 22
1. Задано бинарное отношение r = {<1, 2>, <2, 2>, <2, 1>, <2, 3>, <3, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x = – y?
3. Дана функция f(x) = lnx + , отображающая множество положительных действительных чисел во множество всех действительных чисел. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 23
1. Задано бинарное отношение r = {<1, 1>, <2, 2>, <2, 1>, <2, 3>, <3, 2>, <3, 3>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Будет ли отношением частичного полрядка на множестве действительных чисел отношение xry, задаваемое неравенством x 2 – y2 £ 0?
3. Дана функция f(x) = ex + , отображающая множество положительных действительных чисел на множество положительных действительных чисел. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 24
1. Задано бинарное отношение r = {<1, 1>, <1, 2>, <2, 1>, <3, 1>, <3, 2> <1, 3>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не транзитивного, не рефлексивного и симметричного.
3. Привести пример функции f(x), отображающей множество действительных чисел R во множество неотрицательных действительных чисел, R® [0, ¥) и являющейся сюръективной, но не инъективной.
Вариант № 25
1. Задано бинарное отношение r = {<1, 2>, <2, 1>, <2, 3>, <1, 3>, <3, 1>, <3, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое неравенством x £ y?
3. Дана функция f(x) = lnx + 2x, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 26
1. Задано бинарное отношение r = {<2, 2>, <2, 4>, <1, 4>, <4, 1>, <4, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не транзитивного, не рефлексивного и не симметричного.
3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и являющейся сюръективной и неинъективной.
Вариант № 27
1. Задано бинарное отношение r = {<1, 1>, <3, 4>, <1, 4>, <4, 1>, <4, 3>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством xy = 100?
3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и не являющейся сюръективной, инъективной, биективной.
Вариант № 28
1. Задано бинарное отношение r = {<1, 1>, <2, 2>, <3, 3>, <3, 1>, <1, 3>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения не транзитивного, не рефлексивного и симметричного.
3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и являющейся сюръективной, но не инъективной.
Вариант № 29
1. Задано бинарное отношение r = {<1, 1>, <2, 2>, <4, 4>, <2, 1>, <2, 4>, <4, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения частичного порядка.
3. Дана функция f(x) = x 2 , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Вариант № 30
1. Задано бинарное отношение r = {<1, 1>, <1, 2>, <2, 1>, <2, 4>, <4, 2>}.
Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?
2. Привести пример отношения эквивалентности.
3. Дана функция f(x) = x 2 + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?
Раздел «Графы»
1. Описать граф, заданный матрицей смежности, используя как можно больше характеристик. Составить матрицу инцидентности и связности (сильной связности).
2. Пользуясь алгоритмом Форда-Беллмана, найти минимальный путь из x1 в x7 в ориентированном графе, заданном матрицей весов.
3. Пользуясь алгоритмом Краскала, найти минимальное остовное дерево для графа, заданного матрицей длин ребер.
Варианты заданий
1.1. 0 1 1 0 1 1 2. ¥ 4 6 12 ¥ ¥ ¥ 3. ¥ 12 6 20 14
1 0 0 1 0 0 ¥ ¥ ¥ 13 7 ¥ ¥ 12 ¥ 2 4 6
1 0 0 0 1 0 ¥ ¥ ¥ 5 ¥ 3 ¥ 6 2 ¥ 10 12
0 1 0 0 1 0 ¥ ¥ ¥ ¥ 10 9 ¥ 20 4 10 ¥ 6
1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 8 14 6 12 6 ¥
1 0 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 11
¥ ¥ ¥ ¥ ¥ ¥ ¥
2.1. 0 0 0 0 0 1 2. ¥ 1 3 9 ¥ ¥ ¥ 3. ¥ 1 ¥ 4 5
0 0 1 1 1 0 ¥ ¥ ¥ 10 4 ¥ ¥ 1 ¥ 2 ¥ 1
0 0 0 0 0 0 ¥ ¥ ¥ 2 ¥ 1 ¥ ¥ 2 ¥ 1 1
1 0 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 ¥ 1 ¥ 3
1 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 5 1 1 3 ¥
1 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8
¥ ¥ ¥ ¥ ¥ ¥ ¥
3.1. 0 1 0 1 0 0 2. ¥ 3 5 11 ¥ ¥ ¥ 3. ¥ 6 3 10 7
1 0 0 1 0 0 ¥ ¥ ¥ 12 6 ¥ ¥ 6 ¥ 1 2 3
0 0 0 0 1 1 ¥ ¥ ¥ 3 ¥ 2 ¥ 3 1 ¥ 5 6
1 1 0 0 1 1 ¥ ¥ ¥ ¥ 9 8 ¥ 10 2 5 ¥ 3
0 0 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 7 7 3 6 3 ¥
0 0 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 10
¥ ¥ ¥ ¥ ¥ ¥ ¥
4.1.0 0 0 0 0 1 2. ¥ ¥ 5 4 2 2 9 3. ¥ 7 2 11 7
1 0 1 0 1 1 ¥ ¥ 1 1 ¥ 1 1 7 ¥ 3 ¥ 4
1 0 0 0 0 0 2 ¥ ¥ 1 1 ¥ 3 2 3 ¥ 1 5
0 0 1 0 0 1 ¥ 2 1 ¥ 1 ¥ ¥ 11 ¥ 1 ¥ 3
0 1 1 1 0 0 ¥ ¥ 2 2 ¥ 1 6 7 4 5 3 ¥
0 0 1 0 0 0 1 5 ¥ 1 1 ¥ ¥
2 ¥ 1 ¥ 1 2 ¥
5.1. 0 0 0 1 1 0 2. ¥ 4 ¥ ¥ 3 1 ¥ 3. ¥ 2 ¥ 5 5
0 0 0 1 0 1 3 ¥ 2 1 ¥ ¥ 4 2 ¥ 8 ¥ 7
1 0 0 0 0 0 1 1 ¥ ¥ ¥ ¥ 1 ¥ 8 ¥ 10 1
0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 5 ¥ 10 ¥ 13
1 0 0 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 13 ¥
0 1 0 1 0 0 ¥ 3 ¥ 2 2 ¥ ¥
¥ ¥ 2 ¥ ¥ 2 ¥
6.1. 0 0 1 0 1 0 2. ¥ ¥ 9 ¥ ¥ 2 12 3. ¥ 1 5 4 5
0 0 1 1 1 1 1 ¥ ¥ ¥ 1 2 4 1 ¥ 2 6 1
1 1 0 0 1 0 2 1 ¥ ¥ 1 ¥ 2 5 2 ¥ 1 7
0 1 0 0 0 1 ¥ 1 1 ¥ ¥ 1 ¥ 4 6 1 ¥ 4
1 1 1 0 0 0 1 2 ¥ 2 ¥ ¥ ¥ 5 1 7 4 ¥
0 1 0 1 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8
¥ 2 1 ¥ 1 2 ¥
7.1. 0 0 1 1 0 0 2. ¥ 3 4 9 ¥ ¥ ¥ 3. ¥ 4 3 5 6
1 0 0 0 0 1 12 ¥ ¥ 10 4 ¥ ¥ 4 ¥ 2 ¥ 1
1 0 0 0 1 0 ¥ ¥ ¥ 2 ¥ 1 ¥ 3 2 ¥ 1 1
0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 5 ¥ 1 ¥ 3
0 0 1 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 6 1 1 3 ¥
0 1 0 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8
¥ ¥ ¥ ¥ ¥ ¥ ¥
8.1. 0 1 1 0 1 1 2. ¥ 2 5 8 9 ¥ ¥ 3. ¥ 1 3 4 5
1 0 1 1 0 1 ¥ ¥ ¥ 10 4 ¥ ¥ 1 ¥ 2 9 1
1 1 0 0 1 1 5 3 ¥ 2 1 ¥ ¥ 3 2 ¥ 1 1
0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 9 1 ¥ 3
1 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 5 1 1 3 ¥
1 1 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 9
¥ ¥ ¥ ¥ ¥ ¥ ¥
9.1. 0 1 0 1 1 1 2. ¥ 2 5 14 ¥ ¥ ¥ 3. ¥ 5 3 10 7
1 0 0 1 0 0 11 ¥ ¥ 12 6 ¥ ¥ 5 ¥ 1 2 4
0 0 0 1 1 0 ¥ ¥ ¥ 3 ¥ 2 ¥ 3 1 ¥ 5 6
1 1 1 0 1 0 ¥ ¥ ¥ ¥ 9 8 ¥ 10 2 5 ¥ 3
1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 7 7 4 6 3 ¥
1 0 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 10
¥ ¥ ¥ ¥ ¥ ¥ ¥
10.10 1 1 0 1 1 2. ¥ ¥ 5 4 2 3 9 3. ¥ 7 2 11 7
1 0 0 1 1 1 ¥ ¥ 1 1 ¥ 1 6 7 ¥ 3 ¥ 4
1 0 0 0 1 0 4 ¥ ¥ 1 1 ¥ 3 2 3 ¥ 1 5
0 1 0 0 0 1 ¥ 2 1 ¥ 1 ¥ ¥ 11 ¥ 1 ¥ 3
1 1 1 0 0 1 ¥ ¥ 2 2 ¥ 1 6 7 4 5 3 ¥
1 1 0 1 1 0 1 5 ¥ 1 1 ¥ ¥
2 ¥ 1 ¥ 1 2 ¥
11.1. 0 0 1 0 1 0 2. ¥ 4 9 ¥ 3 1 ¥ 3. ¥ 1 ¥ 4 5
0 0 0 1 0 1 3 ¥ 2 1 ¥ ¥ 4 1 ¥ 8 ¥ 7
1 0 0 0 1 0 1 1 ¥ ¥ 10 ¥ 1 ¥ 8 ¥ 10 1
0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 4 ¥ 10 ¥ 13
1 0 1 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 13 ¥
0 1 0 1 0 0 ¥ 3 ¥ 1 2 ¥ ¥
¥ ¥ 2 ¥ ¥ 2 ¥
12.1 0 0 1 0 1 0 2. ¥ ¥ 9 ¥ 10 2 12 3. ¥ 1 5 4 6
0 0 0 1 0 1 1 ¥ ¥ ¥ 1 2 4 1 ¥ 2 6 3
1 1 0 0 1 1 2 1 ¥ ¥ 1 ¥ 2 5 2 ¥ 1 7
0 0 0 0 0 0 ¥ 1 1 ¥ ¥ 1 15 4 6 1 ¥ 4
1 1 1 0 0 0 1 2 ¥ 2 ¥ ¥ ¥ 6 3 7 4 ¥
0 1 0 1 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8
¥ 2 1 ¥ 1 2 ¥
13.1. 0 0 0 0 0 0 2. ¥ 5 6 15 ¥ ¥ ¥ 3. ¥ 12 6 10 4
1 0 0 1 0 1 ¥ ¥ ¥ 13 7 ¥ ¥ 12 ¥ 2 5 6
1 0 0 0 1 0 ¥ ¥ ¥ 4 ¥ 3 ¥ 6 2 ¥ 10 12
1 1 1 0 0 0 ¥ ¥ ¥ ¥ 10 9 ¥ 10 5 10 ¥ 6
1 1 0 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8 4 6 12 6 ¥
0 1 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 11
¥ ¥ ¥ ¥ ¥ ¥ ¥
14.1. 0 0 1 1 0 0 2. ¥ 2 3 9 ¥ ¥ ¥ 3. ¥ 3 2 4 5
1 0 0 0 0 1 12 ¥ ¥ 10 4 ¥ ¥ 3 ¥ 2 ¥ 1
1 0 0 0 1 0 ¥ ¥ ¥ 2 ¥ 1 ¥ 2 2 ¥ 1 1
0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 ¥ 1 ¥ 3
0 0 1 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 5 1 1 3 ¥
0 1 0 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8
¥ ¥ ¥ ¥ ¥ ¥ ¥
15.1. 0 1 0 1 0 0 2. ¥ 2 5 10 ¥ ¥ ¥ 3. ¥ 6 3 10 4
1 0 0 1 0 0 ¥ ¥ ¥ 12 6 ¥ ¥ 6 ¥ 1 2 3
0 0 0 0 1 1 ¥ ¥ ¥ 3 ¥ 1 ¥ 3 1 ¥ 8 6
1 1 0 0 1 1 ¥ ¥ ¥ ¥ 9 8 ¥ 10 2 8 ¥ 3
0 0 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 7 4 3 6 3 ¥
0 0 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 10
¥ ¥ ¥ ¥ ¥ ¥ ¥
16.1.0 0 0 0 1 1 2. ¥ ¥ 5 4 2 2 10 3. ¥ 4 2 10 6
0 0 1 1 0 0 ¥ ¥ 2 1 ¥ 2 1 4 ¥ 3 ¥ 4
0 1 0 0 1 0 2 ¥ ¥ 1 1 ¥ 3 2 3 ¥ 1 5
0 1 0 0 0 1 ¥ 2 1 ¥ 1 ¥ ¥ 10 ¥ 1 ¥ 3
1 0 1 0 0 0 ¥ ¥ 2 2 ¥ 1 6 6 4 5 3 ¥
1 0 0 1 0 0 1 5 ¥ 1 1 ¥ ¥
2 ¥ 1 ¥ 1 2 ¥
17.1 0 0 1 0 1 0 2. ¥ 4 9 8 3 1 ¥ 3. ¥ 2 ¥ 3 5
0 0 0 1 0 1 3 ¥ 2 1 ¥ ¥ 4 2 ¥ 8 ¥ 7
1 0 0 0 1 0 1 1 ¥ ¥ ¥ ¥ 1 ¥ 8 ¥ 10 1
0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 3 ¥ 10 ¥ 12
1 0 1 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 12 ¥
0 1 0 1 0 0 ¥ 3 ¥ 2 2 ¥ ¥
¥ ¥ 2 ¥ ¥ 2 ¥
18.1. 0 0 1 0 1 0 2. ¥ ¥ 9 ¥ 10 2 12 3. ¥ 1 3 4 5
0 0 0 0 0 0 1 ¥ ¥ ¥ 1 2 4 1 ¥ 2 6 8
1 0 0 0 1 0 2 1 ¥ ¥ 1 ¥ 2 3 2 ¥ 1 7
0 1 0 0 0 1 ¥ 1 1 ¥ ¥ 1 ¥ 4 6 1 ¥ 4
1 0 1 0 0 0 1 2 9 2 ¥ ¥ ¥ 5 8 7 4 ¥
0 1 0 1 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8
¥ 2 1 ¥ 1 2 ¥
19.1. 0 1 1 0 1 1 2. ¥ 3 5 12 20 ¥ ¥ 3. ¥ 1 6 5 14
1 0 0 1 0 0 ¥ ¥ ¥ 13 8 ¥ ¥ 1 ¥ 3 4 6
1 0 0 1 1 1 ¥ ¥ ¥ 5 ¥ 3 ¥ 6 3 ¥ 10 12
0 1 1 0 1 1 ¥ ¥ ¥ ¥ 10 9 ¥ 5 4 10 ¥ 6
1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 8 14 6 12 6 ¥
1 0 1 1 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 11
¥ ¥ ¥ ¥ ¥ ¥ ¥
20.1. 0 1 0 0 1 0 2. ¥ 1 5 7 9 ¥ ¥ 3. ¥ 6 3 4 5
1 0 0 1 0 0 ¥ ¥ ¥ 10 4 ¥ ¥ 6 ¥ 2 9 1
1 0 0 0 1 1 5 3 ¥ ¥ 1 ¥ ¥ 3 2 ¥ 1 4
0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 9 1 ¥ 3
0 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 4 5 1 4 3 ¥
0 1 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 9
¥ ¥ ¥ ¥ ¥ ¥ ¥
21.1. 0 1 0 1 1 1 2. ¥ 1 5 15 ¥ ¥ ¥ 3. ¥ 5 3 6 7
1 0 0 1 0 0 ¥ ¥ 11 12 6 ¥ ¥ 5 ¥ 1 2 4
0 0 0 1 1 0 ¥ ¥ ¥ 3 ¥ 2 ¥ 3 1 ¥ 5 6
1 1 1 0 1 0 ¥ ¥ ¥ ¥ 9 8 ¥ 6 2 5 ¥ 3
1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 7 7 4 6 3 ¥
1 0 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 10
¥ ¥ ¥ ¥ ¥ ¥ ¥
22.10 0 1 0 1 0 2. ¥ ¥ 3 4 1 5 9 3. ¥ 7 2 11 3
0 0 0 0 0 0 ¥ ¥ 1 2 ¥ 1 6 7 ¥ 3 ¥ 4
0 1 0 0 1 1 4 ¥ ¥ 2 1 ¥ 3 2 3 ¥ 1 5
0 1 0 0 0 1 ¥ 2 3 ¥ 1 ¥ ¥ 11 ¥ 1 ¥ 3
1 1 1 0 0 0 ¥ ¥ 2 2 ¥ 1 6 3 4 5 3 ¥
0 0 0 1 1 0 1 5 ¥ 1 1 ¥ ¥
2 ¥ 1 ¥ 1 2 ¥
23.1. 0 0 1 0 1 0 2. ¥ 4 9 ¥ 3 1 ¥ 3. ¥ 1 9 4 5
0 0 0 1 0 1 3 ¥ 2 1 ¥ ¥ 4 1 ¥ 8 ¥ 7
1 0 0 0 1 0 1 1 ¥ ¥ 10 14 1 9 8 ¥ 10 1
0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 4 ¥ 10 ¥ 13
1 0 1 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 13 ¥
0 1 0 1 0 0 ¥ 3 ¥ 1 2 ¥ ¥
¥ ¥ 2 ¥ ¥ 2 ¥
24.1 0 0 1 0 1 0 2. ¥ ¥ 8 ¥ 10 3 12 3. ¥ 3 2 4 6
0 0 0 1 0 0 1 ¥ ¥ ¥ 1 2 3 3 ¥ 5 6 3
0 1 0 0 1 0 2 1 ¥ ¥ 1 ¥ 2 2 5 ¥ 1 7
0 0 0 0 0 1 ¥ 1 1 ¥ ¥ 1 15 4 6 1 ¥ 4
0 1 1 0 0 0 1 2 ¥ 2 ¥ ¥ ¥ 6 3 7 4 ¥
0 1 0 0 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8
¥ 2 1 ¥ 1 2 ¥
25.1.0 0 1 0 0 1 2. ¥ ¥ 5 4 2 2 10 3. ¥ 1 2 8 5
0 0 1 1 1 1 ¥ ¥ 2 1 ¥ 2 1 1 ¥ 3 ¥ 4
1 1 0 0 0 0 2 ¥ ¥ 1 1 ¥ 3 2 3 ¥ 1 5
0 1 0 0 0 1 12 2 1 ¥ 1 ¥ ¥ 8 ¥ 1 ¥ 3
0 1 0 0 0 1 ¥ ¥ 2 2 ¥ 1 6 5 4 5 3 ¥
1 1 0 1 1 0 1 5 ¥ 1 1 ¥ ¥
2 ¥ 1 ¥ 1 2 ¥
26.1. 0 0 0 0 1 0 2. ¥ 4 9 8 3 2 ¥ 3. ¥ 2 9 3 5
0 0 0 1 0 0 3 ¥ 2 1 ¥ ¥ 5 2 ¥ 8 ¥ 7
1 0 0 0 1 0 2 1 ¥ ¥ ¥ ¥ 1 9 8 ¥ 10 1
0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 3 ¥ 10 ¥ 12
0 0 0 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 12 ¥
0 1 0 0 0 0 ¥ 3 ¥ 2 2 ¥ ¥
¥ ¥ 2 ¥ ¥ 2 ¥
27.1. 0 0 1 0 1 0 2. ¥ ¥ 9 ¥ 8 1 12 3. ¥ 1 3 7 2
0 0 1 1 1 1 1 ¥ ¥ ¥ 2 2 4 1 ¥ 5 6 8
1 1 0 0 1 0 2 1 ¥ ¥ 1 ¥ 2 3 5 ¥ 1 7
0 1 0 0 0 1 ¥ 1 1 ¥ ¥ 1 ¥ 7 6 1 ¥ 4
1 1 1 0 0 0 1 2 9 2 ¥ ¥ ¥ 2 8 7 4 ¥
0 1 0 1 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8
¥ 2 1 ¥ 1 2 ¥
28.1. 0 1 1 0 1 1 2. ¥ 3 5 12 20 ¥ ¥ 3. ¥ 1 6 5 14
1 0 0 1 0 0 ¥ ¥ ¥ 13 8 ¥ ¥ 1 ¥ 3 4 6
1 0 0 1 1 1 ¥ ¥ ¥ 5 ¥ 3 ¥ 6 3 ¥ 10 12
0 1 1 0 1 1 ¥ ¥ ¥ ¥ 10 9 ¥ 5 4 10 ¥ 6
1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 8 14 6 12 6 ¥
1 0 1 1 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 11
¥ ¥ ¥ ¥ ¥ ¥ ¥
29.1. 0 1 0 0 1 0 2. ¥ 1 8 6 7 ¥ ¥ 3. ¥ 2 3 4 5
1 0 0 1 0 0 ¥ ¥ ¥ 10 4 ¥ ¥ 2 ¥ 6 9 1
1 0 0 0 1 1 5 3 ¥ ¥ 1 ¥ ¥ 3 6 ¥ 1 4
0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 9 1 ¥ 3
0 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 4 5 1 4 3 ¥
0 1 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 9
¥ ¥ ¥ ¥ ¥ ¥ ¥
30.1. 0 1 0 1 1 1 2. ¥ 2 4 13 ¥ ¥ ¥ 3. ¥ 5 3 6 4
1 0 0 1 0 0 ¥ ¥ 11 12 6 ¥ ¥ 5 ¥ 1 2 7
0 0 0 1 1 0 ¥ ¥ ¥ 3 ¥ 2 ¥ 3 1 ¥ 5 6
1 1 1 0 1 0 ¥ ¥ ¥ ¥ 9 8 ¥ 6 2 5 ¥ 3
1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 7 4 7 6 3 ¥
1 0 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 10
¥ ¥ ¥ ¥ ¥ ¥ ¥