Прямое произведение множеств

Пусть A и B – два множества. Прямым (декартовым) произведением двух множеств A и B называется множество упорядоченных пар, в котором первый элемент каждой пары принадлежит A, а второй принадлежит B.

A Прямое произведение множеств - student2.ru B = {(a, b) | a Прямое произведение множеств - student2.ru A, b Прямое произведение множеств - student2.ru B}.

Пример: точка на плоскости может быть задана упорядоченной парой координат, т.е. двумя точками на координатных осях. Т.о., R2 = R Прямое произведение множеств - student2.ru R. Метод координат ввел в употребление Рене Декарт (1596 - 1650), отсюда и название – «декартово произведение».

Степенью множества А называется его прямое произведение самого на себя.

An = Прямое произведение множеств - student2.ru

Соответственно, A1 = A, A2 = A Прямое произведение множеств - student2.ru A и вообще An = A Прямое произведение множеств - student2.ru An-1.

Теорема: |A Прямое произведение множеств - student2.ru B| = |A| |B|.

Доказательство: первый компонент упорядоченной пары можно выбрать |А| способами, второй - |B| способами. Таким образом, всего имеется |A| |B| различных упорядоченных пар.

Следствие: |An| = |A|n.

Комбинаторика

Введение

При решении многих практических задач приходится выбирать из некоторой совокупности объектов элементы, обладающие тем или иным свойством, подсчитать число различных комбинаций и т.п. Такие задачи называются комбинаторными, а раздел математики, занимающийся такого рода задачами, называется комбинаторикой.

Рассмотрим элементарный жизненный пример.

Пусть некоторое агентство недвижимости располагает базой данных из n записей, каждая запись содержит одно предложение (что имеется) и один запрос (что требуется). Требуется найти все такие пары записей, в которых предложение первой записи совпадает с запросом второй (осуществить подбор вариантов обмена). Допустим, что используемая СУБД позволяет проверить вариант за одну миллисекунду. При «лобовом» алгоритме поиска вариантов (каждая запись сравнивается с каждой) потребуется n(n-1)/2 сравнений. Если n=100, то ответ будет получен через 4,95 секунд; но если n=100000, то ответ будет получен за 4 999 950 секунд, что составляет почти 1389 часов и вряд ли это может считаться приемлемым. При этом мы оценили только трудоемкость прямых вариантов, но есть варианты, когда число участников сделки больше двух …

Этот пример показывает, что комбинаторные вычисления помогают осуществить предварительный анализ и количественную оценку исходных задач и используемых алгоритмов. Основным инструментом такого анализа являются законы и формулы комбинаторики.




Основные законы комбинаторики.

Правило суммы.

Задача: на блюде лежат 5 яблок и 2 груши. Сколькими способами можно выбрать один плод?

Решение: плод можно выбрать семью способами (5+2=7).

Если некоторый элемент a может быть выбран из множества элементов m способами, а другой элемент b может быть выбран n способами, причем любой выбор элемента b отличен от любого выбора элемента a, то выбрать либо a, либо b можно m + n способами.

На языке теории множеств это правило формулируется следующим образом:

Теорема1: если пересечение конечных множеств пусто, то число элементов в их объединении равно сумме чисел элементов множеств А и В.

А Прямое произведение множеств - student2.ru В = Прямое произведение множеств - student2.ru Прямое произведение множеств - student2.ru | А Прямое произведение множеств - student2.ru В | = |A| + |B|

Разберем случай, когда множества могут иметь непустые пересечения.

Теорема2: для любых конечных множеств верно равенство:

| А Прямое произведение множеств - student2.ru В | = |A| + |B| - | А Прямое произведение множеств - student2.ru В |.

Задача: среди студентов первого курса 30 человек имеют дома компьютер, 35 – учебник по информатике; оказалось, что 10 студентов имеют и компьютер, и учебник по информатике. Сколько студентов на первом курсе?

Решение: пусть множество А составляют студенты, имеющие компьютер, множество В – студенты, имеющие учебник по информатике; по условию задачи:

|A| = 30 |B| = 35 | А Прямое произведение множеств - student2.ru В | = 10 | А Прямое произведение множеств - student2.ru В | =?

| А Прямое произведение множеств - student2.ru В | = |A| + |B| - | А Прямое произведение множеств - student2.ru В | = 30 + 35 – 10 = 55.

Правило произведения.

Вторым основным правилом комбинаторики является правило произведения.

Задача: определить количество клеток в игре «морской бой», если номер клетки состоит из буквы (букв 10) и цифры (цифр тоже 10).

Решение: количество клеток равно 10•10=100.

Если элемент a можно выбрать из множества элементов m способами и после каждого такого выбора элемент b можно выбрать n способами, то два элемента (упорядоченную пару) a и b можно выбрать m•n способами.

На языке множеств это правило выражается в виде следующей теоремы.

Теорема3: если множества А и В конечны, то |A Прямое произведение множеств - student2.ru B| = |A| • |B|.

Следствие: если множества А1, А2, …, Аn - конечны, то

|A1 Прямое произведение множеств - student2.ruПрямое произведение множеств - student2.ru Аn| = |A1|• … •|An|.

Задача: сколько номеров, состоящих из двух букв, за которыми идут три цифры можно составить, если использовать 29 букв и 10 цифр.

Решение: обозначим множество букв А, множество цифр – В; каждый номер требуемого вида является набором длины n из декартова произведения А Прямое произведение множеств - student2.ru А Прямое произведение множеств - student2.ru В Прямое произведение множеств - student2.ru В Прямое произведение множеств - student2.ru В; по условию |А| = 29, |В| = 10, тогда по следствию из теоремы3 имеем:

| А Прямое произведение множеств - student2.ru А Прямое произведение множеств - student2.ru В Прямое произведение множеств - student2.ru В Прямое произведение множеств - student2.ru В | = 29•29•10•10•10 = 841 000.

Формулы комбинаторики

Перестановки

1) Перестановки без повторений.

Перестановки - это комбинации, состоящие из одних и тех же элементов и отличающиеся только порядком расположения этих элементов. Возьмем n различных элементов a1, a2, a3, … an; будем переставлять эти элементы всевозможными способами, оставляя без изменения число элементов и меняя только порядок их расположения. Обозначим общее число полученных таким образом перестановок P(n). P - первая буква французского слова permutation - перестановка.

Составив таблицу перестановок для n элементов и применив (n - 1) раз правило произведения, получим число всех возможных перестановок:

P(n) = n • (n -1) • (n - 2) • … • 3 • 2 • 1 = n!

Такие перестановки называются перестановками без повторений (один и тот же элемент не может повториться в комбинации, все элементы различны).

Задача: шесть человек могут в разном порядке сесть за круглый стол, сколько существует способов разместить эти шесть человек за столом?

Решение: т.к. все люди различны и их комбинации различаются только порядком следования, то мы имеем перестановки без повторений. Определим их число:

Р(6) = 6! = 1 • 2 • 3 • 4 • 5 • 6 = 720.

Наши рекомендации