Кинетическая энергия вращения
Глава 4
Механика твердого тела
Момент инерции
При изучении вращения твердого тела пользуются понятием момента инерции. Моментом инерциисистемы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси:
В случае непрерывного распределения масс эта сумма сводится к интегралу
где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с координатами х, у, z.
В качестве примера найдем момент инерции однородного сплошного цилиндра высотой Л и радиусом R относительно его геометрической оси (рис.23). Разобьем
цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом rи внешним — r+dr. Момент инерции каждого полого цилиндра dJ = r2dm (так как dr<<r, то считаем, что расстояние всех точек цилиндра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2prhdr. Если r — плотность материала, то dm=r•2prhdr и dJ = 2prr3dr. Тогда момент инерции сплошного цилиндра
но так как pR'2h — объем цилиндра, то его масса m = pR2hr, а момент инерции
J = 1/2R2.
Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера:момент инерции тела J относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы mтела на квадрат расстояния а между осями: J = Jc + ma2. (16.1)
Таблица 1
В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).
Кинетическая энергия вращения
Рассмотрим абсолютно твердое тело (см. § 1), вращающееся около неподвижной оси z, проходящей через него (рис. 24). Мысленно разобьем это тело на маленькие объемы с элементарными массами m1, m2, ..., mn, находящиеся на расстоянии r1, r2, ..., rn от оси вращения. При вращении твердого тела относительно неподвижной оси отдельные его элементарные объемы массами mi, опишут окружности различных радиусов ri и имеют различные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:
w = v1/r1 = v2/r2 = ... = vn/rn. (17.1)
Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его элементарных объемов:
или
Используя выражение (17.1), получим
где Jz — момент инерции тела относительно оси 2. Таким образом, кинетическая энергия вращающегося тела
Tвр = Jzw2/2. (17.2)
Из сравнения формулы (17.2) с выражением (12.1) для кинетической энергии тела, движущегося поступательно (T= mv2/2), следует, что момент инерции вращательного движения — мера инертности тела. Формула (17.2) справедлива для тела, вращающегося вокруг неподвижной оси.
В случае плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения:
где m — масса катящегося тела; vc — скорость центра масс тела; J с — момент инерции тела относительно оси, проходящей через его центр масс; w — угловая скорость тела.